Skip to main content

Cartilage Lesions and Osteoarthritis: Cell Therapy

  • Chapter
  • First Online:
Orthobiologics

Abstract

Symptomatic cartilage lesions and early osteoarthritis (OA) are musculoskeletal issues with both significant clinical and large economic burdens. Despite regenerative techniques, such as the use of autologous chondrocytes, the complete healing of damaged cartilage with consistent reproduction of normal hyaline cartilage has not yet been achieved. Alternatively, mesenchymal stromal cells (MSC) have received considerable research attention as a cellular therapy injective option. MSC populations are the product of competitive expansion and clone selection starting from a mixed population of heterogeneous tissue-specific colony connective progenitors (CTPs). While MSC populations vary significantly from batch to batch and patient to patient, culture-expanded MSCs are relatively easy to generate and are capable of chondrogenic differentiation potential. Intra-articular (IA) injection of MSCs can be an efficient and minimally invasive delivery system. The results of preclinical studies have provided preliminary evidence of safety and efficacy of MSCs for the treatment of OA. Several clinical trials have demonstrated that IA injection of MSCs has beneficial outcomes for patients with OA. The use of concentrates, mainly from bone marrow and adipose tissue, is recently growing to take advantage of MSC potential while avoiding the complexity related to cell expansion. In this chapter, we discuss the feasibility of IA injection of MSCs and concentrates, and the current evidence on the clinical efficacy as a potential therapy for patients with cartilage lesions and OA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zainal Ariffin SH, Kermani S, Megat Abdul Wahab R, Senafi S, Zainal Ariffin Z, Abdul Razak M. In vitro chondrogenesis transformation study of mouse dental pulp stem cells. Scientific World J. 2012;2012:827149.

    Article  Google Scholar 

  2. Fernandes TL, de SantAnna JP C, Frisene I, Gazarini JP, Gomes Pinheiro CC, Gomoll AH, et al. Systematic review of human dental pulp stem cells for cartilage regeneration. Tissue Eng Part B Rev. 2020;26(1):1–12.

    Article  PubMed  Google Scholar 

  3. Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc. 2010;42(10):1795–801.

    Article  PubMed  Google Scholar 

  4. Perera JR, Gikas PD, Bentley G. The present state of treatments for articular cartilage defects in the knee. Ann R Coll Surg Engl. 2012;94(6):381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, et al. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):434–47.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fernandes TL, Shimomura K, Asperti A, Pinheiro CCG, Caetano HVA, Oliveira C, et al. Development of a novel large animal model to evaluate human dental pulp stem cells for articular cartilage treatment. Stem Cell Rev Rep. 2018;14(5):734–43.

    Article  CAS  PubMed  Google Scholar 

  7. Frank CB, Shrive NG, Boorman RS, Lo IK, Hart DA. New perspectives on bioengineering of joint tissues: joint adaptation creates a moving target for engineering replacement tissues. Ann Biomed Eng. 2004;32(3):458–65.

    Article  CAS  PubMed  Google Scholar 

  8. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kubosch EJ, Lang G, Furst D, Kubosch D, Izadpanah K, Rolauffs B, et al. The potential for synovium-derived stem cells in cartilage repair. Curr Stem Cell Res Ther. 2018;13(3):174–84.

    Article  CAS  PubMed  Google Scholar 

  10. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil. 2002;10(6):432–63.

    Article  CAS  Google Scholar 

  11. Chu CR, Rodeo S, Bhutani N, Goodrich LR, Huard J, Irrgang J, et al. Optimizing clinical use of biologics in orthopaedic surgery: consensus recommendations from the 2018 AAOS/NIH U-13 conference. J Am Acad Orthop Surg. 2019;27(2):e50–63.

    Article  PubMed  Google Scholar 

  12. Huang R, Li W, Zhao Y, Yang F, Xu M. Clinical efficacy and safety of stem cell therapy for knee osteoarthritis: a meta-analysis. Medicine. 2020;99(11):e19434.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barbour KE, Helmick CG, Boring M, Brady TJ. Vital signs: prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2013-2015. MMWR Morb Mortal Wkly Rep. 2017;66(9):246–53.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shen J, Chen D. Recent progress in osteoarthritis research. J Am Acad Orthop Surg. 2014;22(7):467–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim SH, Ha CW, Park YB, Nam E, Lee JE, Lee HJ. Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg. 2019;139(7):971–80.

    Article  PubMed  Google Scholar 

  16. Harrell CR, Markovic BS, Fellabaum C, Arsenijevic A, Volarevic V. Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectives. Biomed Pharmacother. 2019;109:2318–26.

    Article  CAS  PubMed  Google Scholar 

  17. Filardo G, Kon E, Longo UG, Madry H, Marchettini P, Marmotti A, et al. Non-surgical treatments for the management of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016;24(6):1775–85.

    Article  PubMed  Google Scholar 

  18. Bannuru RR, Osani MC, Vaysbrot EE, Arden NK, Bennell K, Bierma-Zeinstra SMA, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr Cartil. 2019;27(11):1578–89.

    Article  CAS  Google Scholar 

  19. Xia P, Wang X, Lin Q, Li X. Efficacy of mesenchymal stem cells injection for the management of knee osteoarthritis: a systematic review and meta-analysis. Int Orthop. 2015;39(12):2363–72.

    Article  PubMed  Google Scholar 

  20. Yubo M, Yanyan L, Li L, Tao S, Bo L, Lin C. Clinical efficacy and safety of mesenchymal stem cell transplantation for osteoarthritis treatment: a meta-analysis. PLoS One. 2017;12(4):e0175449.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Erggelet C, Vavken P. Microfracture for the treatment of cartilage defects in the knee joint—a golden standard? J Clin Orthop Trauma. 2016;7(3):145–52.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, et al. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann Rheum Dis. 2018;77(10):1524–34.

    Article  CAS  PubMed  Google Scholar 

  23. Suri S, Gill SE, Massena de Camin S, Wilson D, McWilliams DF, Walsh DA. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis. 2007;66(11):1423–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dai M, Sui B, Xue Y, Liu X, Sun J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials. 2018;180:91–103.

    Article  CAS  PubMed  Google Scholar 

  25. Marcacci M, Filardo G, Kon E. Treatment of cartilage lesions: what works and why? Injury. 2013;44(Suppl 1):S11–5.

    Article  PubMed  Google Scholar 

  26. Kon E, Filardo G, Di Martino A, Marcacci M. ACI and MACI. J Knee Surg. 2012;25(1):17–22.

    Article  PubMed  Google Scholar 

  27. Niemeyer P, Salzmann G, Feucht M, Pestka J, Porichis S, Ogon P, et al. First-generation versus second-generation autologous chondrocyte implantation for treatment of cartilage defects of the knee: a matched-pair analysis on long-term clinical outcome. Int Orthop. 2014;38(10):2065–70.

    Article  PubMed  Google Scholar 

  28. Hickery MS, Bayliss MT, Dudhia J, Lewthwaite JC, Edwards JC, Pitsillides AA. Age-related changes in the response of human articular cartilage to IL-1alpha and transforming growth factor-beta (TGF-beta): chondrocytes exhibit a diminished sensitivity to TGF-beta. J Biol Chem. 2003;278(52):53063–71.

    Article  CAS  PubMed  Google Scholar 

  29. Shimomura K, Ando W, Moriguchi Y, Sugita N, Yasui Y, Koizumi K, et al. Next generation mesenchymal stem cell (MSC)-based cartilage repair using scaffold-free tissue engineered constructs generated with synovial mesenchymal stem cells. Cartilage. 2015;6(2 Suppl):13S–29S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fernandes TL, Kimura HA, Pinheiro CCG, Shimomura K, Nakamura N, Ferreira JR, et al. Human synovial mesenchymal stem cells good manufacturing practices for articular cartilage regeneration. Tissue Eng Part C Methods. 2018;24(12):709–16.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rizk A, Rabie AB. Human dental pulp stem cells expressing transforming growth factor beta3 transgene for cartilage-like tissue engineering. Cytotherapy. 2013;15(6):712–25.

    Article  CAS  PubMed  Google Scholar 

  32. Kon E, Di Martino A, Filardo G, Tetta C, Busacca M, Iacono F, et al. Second-generation autologous chondrocyte transplantation: MRI findings and clinical correlations at a minimum 5-year follow-up. Eur J Radiol. 2011;79(3):382–8.

    Article  CAS  PubMed  Google Scholar 

  33. Tuan RS, Chen AF, Klatt BA. Cartilage regeneration. J Am Acad Orthop Surg. 2013;21(5):303–11.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Muschler GF, Midura RJ, Nakamoto C. Practical modeling concepts for connective tissue stem cell and progenitor compartment kinetics. J Biomed Biotechnol. 2003;2003(3):170–93.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Muschler GF, Midura RJ. Connective tissue progenitors: practical concepts for clinical applications. Clin Orthop Relat Res. 2002;395:66–80.

    Article  Google Scholar 

  36. Mantripragada VP, Piuzzi NS, Bova WA, Boehm C, Obuchowski NA, Lefebvre V, et al. Donor-matched comparison of chondrogenic progenitors resident in human infrapatellar fat pad, synovium, and periosteum - implications for cartilage repair. Connect Tissue Res. 2019;60(6):597–610.

    Article  CAS  PubMed  Google Scholar 

  37. Qadan MA, Piuzzi NS, Boehm C, Bova W, Moos M Jr, Midura RJ, et al. Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface and adipose tissue. Cytotherapy. 2018;20(3):343–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson PG, Murray IR, West CC, Goudie EB, Yong LY, White TO, et al. Reporting of mesenchymal stem cell preparation protocols and composition: a systematic review of the clinical orthopaedic literature. Am J Sports Med. 2019;47(4):991–1000.

    Article  PubMed  Google Scholar 

  39. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Semin Cell Dev Biol. 2017;67:56–64.

    Article  CAS  PubMed  Google Scholar 

  41. Park YB, Ha CW, Lee CH, Yoon YC, Park YG. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med. 2017;6(2):613–21.

    Article  CAS  PubMed  Google Scholar 

  42. Shimomura K, Ando W, Tateishi K, Nansai R, Fujie H, Hart DA, et al. The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials. 2010;31(31):8004–11.

    Article  CAS  PubMed  Google Scholar 

  43. Fibbe WE, Nauta AJ, Roelofs H. Modulation of immune responses by mesenchymal stem cells. Ann N Y Acad Sci. 2007;1106:272–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32(3):252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liotta F, Angeli R, Cosmi L, Fili L, Manuelli C, Frosali F, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing notch signaling. Stem Cells. 2008;26(1):279–89.

    Article  CAS  PubMed  Google Scholar 

  46. Lepage SIM, Robson N, Gilmore H, Davis O, Hooper A, St John S, et al. Beyond cartilage repair: the role of the osteochondral unit in joint health and disease. Tissue Eng Part B Rev. 2019;25(2):114–25.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fahy N, de Vries-van Melle ML, Lehmann J, Wei W, Grotenhuis N, Farrell E, et al. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthr Cartil. 2014;22(8):1167–75.

    Google Scholar 

  48. Manferdini C, Paolella F, Gabusi E, Gambari L, Piacentini A, Filardo G, et al. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation. Osteoarthr Cartil. 2017;25(7):1161–71.

    Article  CAS  Google Scholar 

  49. Khatab S, van Osch GJ, Kops N, Bastiaansen-Jenniskens YM, Bos PK, Verhaar JA, et al. Mesenchymal stem cell secretome reduces pain and prevents cartilage damage in a murine osteoarthritis model. Eur Cell Mater. 2018;36:218–30.

    Article  CAS  PubMed  Google Scholar 

  50. Affan A, Al-Jezani N, Railton P, Powell JN, Krawetz RJ. Multiple mesenchymal progenitor cell subtypes with distinct functional potential are present within the intimal layer of the hip synovium. BMC Musculoskelet Disord. 2019;20(1):125.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kwee E, Saidel G, Powell K, Heylman C, Boehm C, Muschler G. Quantifying proliferative and surface marker heterogeneity in colony-founding connective tissue progenitors and their progeny using time-lapse microscopy. J Tissue Eng Regen Med. 2019;13(2):203–16.

    CAS  PubMed  Google Scholar 

  52. Prockop DJ. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther. 2009;17(6):939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Satue M, Schuler C, Ginner N, Erben RG. Intra-articularly injected mesenchymal stem cells promote cartilage regeneration, but do not permanently engraft in distant organs. Sci Rep. 2019;9(1):10153.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lee KB, Hui JH, Song IC, Ardany L, Lee EH. Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. Stem Cells. 2007;25(11):2964–71.

    Article  PubMed  Google Scholar 

  55. Park YB, Ha CW, Kim JA, Han WJ, Rhim JH, Lee HJ, et al. Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthr Cartil. 2017;25(4):570–80.

    Article  CAS  Google Scholar 

  56. Xia H, Liang C, Luo P, Huang J, He J, Wang Z, et al. Pericellular collagen I coating for enhanced homing and chondrogenic differentiation of mesenchymal stem cells in direct intra-articular injection. Stem Cell Res Ther. 2018;9(1):174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chahla J, Piuzzi NS, Mitchell JJ, Dean CS, Pascual-Garrido C, LaPrade RF, et al. Intra-articular cellular therapy for osteoarthritis and focal cartilage defects of the knee: a systematic review of the literature and study quality analysis. J Bone Joint Surg Am. 2016;98(18):1511–21.

    Article  PubMed  Google Scholar 

  58. Ha CW, Park YB, Kim SH, Lee HJ. Intra-articular mesenchymal stem cells in osteoarthritis of the knee: a systematic review of clinical outcomes and evidence of cartilage repair. Arthroscopy. 2019;35(1):277–88.e2.

    Article  PubMed  Google Scholar 

  59. Xu S, Liu H, Xie Y, Sang L, Liu J, Chen B. Effect of mesenchymal stromal cells for articular cartilage degeneration treatment: a meta-analysis. Cytotherapy. 2015;17(10):1342–52.

    Article  CAS  PubMed  Google Scholar 

  60. Kwee E, Herderick EE, Adams T, Dunn J, Germanowski R, Krakosh F, et al. Integrated colony imaging, analysis, and selection device for regenerative medicine. SLAS Technol. 2017;22(2):217–23.

    Article  PubMed  Google Scholar 

  61. Cavallo C, Boffa A, Andriolo L, Silva S, Grigolo B, Zaffagnini S, et al. Bone marrow concentrate injections for the treatment of osteoarthritis: evidence from preclinical findings to the clinical application. Int Orthop. 2021;45(2):525–38.

    Article  PubMed  Google Scholar 

  62. Roffi A, Nakamura N, Sanchez M, Cucchiarini M, Filardo G. Injectable systems for intra-articular delivery of mesenchymal stromal cells for cartilage treatment: a systematic review of preclinical and clinical evidence. Int J Mol Sci. 2018;19(11)

    Google Scholar 

  63. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92(10):1927–37.

    Article  PubMed  Google Scholar 

  64. Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc. 2013;21(8):1717–29.

    Article  PubMed  Google Scholar 

  65. Fortier LA, Strauss EJ, Shepard DO, Becktell L, Kennedy JG. Biological effects of bone marrow concentrate in knee pathologies. J Knee Surg. 2019;32(1):2–8.

    Article  PubMed  Google Scholar 

  66. Shapiro SA, Arthurs JR, Heckman MG, Bestic JM, Kazmerchak SE, Diehl NN, et al. Quantitative T2 MRI mapping and 12-month follow-up in a randomized, blinded, placebo controlled trial of bone marrow aspiration and concentration for osteoarthritis of the knees. Cartilage. 2019;10(4):432–43.

    Article  CAS  PubMed  Google Scholar 

  67. Centeno C, Sheinkop M, Dodson E, Stemper I, Williams C, Hyzy M, et al. A specific protocol of autologous bone marrow concentrate and platelet products versus exercise therapy for symptomatic knee osteoarthritis: a randomized controlled trial with 2 year follow-up. J Transl Med. 2018;16(1):355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hernigou P, Auregan JC, Dubory A, Flouzat-Lachaniette CH, Chevallier N, Rouard H. Subchondral stem cell therapy versus contralateral total knee arthroplasty for osteoarthritis following secondary osteonecrosis of the knee. Int Orthop. 2018;42(11):2563–71.

    Article  PubMed  Google Scholar 

  69. Hernigou P, Delambre J, Quiennec S, Poignard A. Human bone marrow mesenchymal stem cell injection in subchondral lesions of knee osteoarthritis: a prospective randomized study versus contralateral arthroplasty at a mean fifteen year follow-up. Int Orthop. 2021;45(2):365–73.

    Article  PubMed  Google Scholar 

  70. Hernigou P, Bouthors C, Bastard C, Flouzat Lachaniette CH, Rouard H, Dubory A. Subchondral bone or intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis: what better postpone knee arthroplasty at fifteen years? A randomized study. Int Orthop. 2021;45(2):391–9.

    Article  PubMed  Google Scholar 

  71. Davies BM, Snelling SJB, Quek L, Hakimi O, Ye H, Carr A, et al. Identifying the optimum source of mesenchymal stem cells for use in knee surgery. J Orthop Res. 2017;35(9):1868–75.

    Article  PubMed  Google Scholar 

  72. Pierini M, Di Bella C, Dozza B, Frisoni T, Martella E, Bellotti C, et al. The posterior iliac crest outperforms the anterior iliac crest when obtaining mesenchymal stem cells from bone marrow. J Bone Joint Surg Am. 2013;95(12):1101–7.

    Article  PubMed  Google Scholar 

  73. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008;129(3):163–73.

    Article  CAS  PubMed  Google Scholar 

  74. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 2004;22(5):675–82.

    Article  CAS  PubMed  Google Scholar 

  75. Centeno CJ, Al-Sayegh H, Bashir J, Goodyear S, Freeman MD. A dose response analysis of a specific bone marrow concentrate treatment protocol for knee osteoarthritis. BMC Musculoskelet Disord. 2015;16:258.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hegde V, Shonuga O, Ellis S, Fragomen A, Kennedy J, Kudryashov V, et al. A prospective comparison of 3 approved systems for autologous bone marrow concentration demonstrated nonequivalency in progenitor cell number and concentration. J Orthop Trauma. 2014;28(10):591–8.

    Article  PubMed  Google Scholar 

  77. Dragoo JL, Guzman RA. Evaluation of the consistency and composition of commercially available bone marrow aspirate concentrate systems. Orthop J Sports Med. 2020;8(1):2325967119893634.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Carelli S, Messaggio F, Canazza A, Hebda DM, Caremoli F, Latorre E, et al. Characteristics and properties of mesenchymal stem cells derived from microfragmented adipose tissue. Cell Transplant. 2015;24(7):1233–52.

    Article  PubMed  Google Scholar 

  79. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  80. Shanmugasundaram S, Vaish A, Chavada V, Murrell WD, Vaishya R. Assessment of safety and efficacy of intra-articular injection of stromal vascular fraction for the treatment of knee osteoarthritis-a systematic review. Int Orthop. 2021;45:615–25.

    Article  PubMed  Google Scholar 

  81. Perdisa F, Gostynska N, Roffi A, Filardo G, Marcacci M, Kon E. Adipose-derived mesenchymal stem cells for the treatment of articular cartilage: a systematic review on preclinical and clinical evidence. Stem Cells Int. 2015;2015:597652.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garza JR, Campbell RE, Tjoumakaris FP, Freedman KB, Miller LS, Santa Maria D, et al. Clinical efficacy of intra-articular mesenchymal stromal cells for the treatment of knee osteoarthritis: a double-blinded prospective randomized controlled clinical trial. Am J Sports Med. 2020;48(3):588–98.

    Article  PubMed  Google Scholar 

  83. Hong Z, Chen J, Zhang S, Zhao C, Bi M, Chen X, et al. Intra-articular injection of autologous adipose-derived stromal vascular fractions for knee osteoarthritis: a double-blind randomized self-controlled trial. Int Orthop. 2019;43(5):1123–34.

    Article  PubMed  Google Scholar 

  84. Tremolada C, Colombo V, Ventura C. Adipose tissue and mesenchymal stem cells: state of the art and Lipogems(R) technology development. Curr Stem Cell Rep. 2016;2:304–12.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bianchi F, Maioli M, Leonardi E, Olivi E, Pasquinelli G, Valente S, et al. A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplant. 2013;22(11):2063–77.

    Article  PubMed  Google Scholar 

  86. Hamdi H, Planat-Benard V, Bel A, Puymirat E, Geha R, Pidial L, et al. Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections. Cardiovasc Res. 2011;91(3):483–91.

    Article  CAS  PubMed  Google Scholar 

  87. Vezzani B, Gomez-Salazar M, Casamitjana J, Tremolada C, Peault B. Human adipose tissue Micro-fragmentation for cell phenotyping and Secretome characterization. J Vis Exp. 2019;152

    Google Scholar 

  88. Vezzani B, Shaw I, Lesme H, Yong L, Khan N, Tremolada C, et al. Higher pericyte content and secretory activity of microfragmented human adipose tissue compared to enzymatically derived stromal vascular fraction. Stem Cells Transl Med. 2018;7(12):876–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. D’Arrigo D, Roffi A, Cucchiarini M, Moretti M, Candrian C, Filardo G. Secretome and extracellular vesicles as new biological therapies for knee osteoarthritis: a systematic review. J Clin Med. 2019;4, 8(11)

    Google Scholar 

  90. Filardo G, Tschon M, Perdisa F, Brogini S, Cavallo C, Desando G, et al. Micro-fragmentation is a valid alternative to cell expansion and enzymatic digestion of adipose tissue for the treatment of knee osteoarthritis: a comparative preclinical study. Knee Surg Sports Traumatol Arthrosc. 2021;19

    Google Scholar 

  91. Heidari N, Noorani A, Slevin M, Cullen A, Stark L, Olgiati S, et al. Patient-centered outcomes of microfragmented adipose tissue treatments of knee osteoarthritis: an observational, intention-to-treat study at twelve months. Stem Cells Int. 2020;2020:8881405.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hudetz D, Boric I, Rod E, Jelec Z, Kunovac B, Polasek O, et al. Early results of intra-articular micro-fragmented lipoaspirate treatment in patients with late stages knee osteoarthritis: a prospective study. Croat Med J. 2019;60(3):227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimasa Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandes, T.L., Shimomura, K., Hart, D.A., Boffa, A., Nakamura, N. (2022). Cartilage Lesions and Osteoarthritis: Cell Therapy. In: Filardo, G., Mandelbaum, B.R., Muschler, G.F., Rodeo, S.A., Nakamura, N. (eds) Orthobiologics. Springer, Cham. https://doi.org/10.1007/978-3-030-84744-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84744-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84743-2

  • Online ISBN: 978-3-030-84744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics