Skip to main content

Ligament Lesions: Cell Therapy

  • Chapter
  • First Online:
Orthobiologics

Abstract

There is a paucity in the orthopedic literature regarding the use of cell therapies for ligament injuries. A majority of the existing literature on this topic is preclinical, considers small case series, or comprises anecdotal, editorial-type articles, with limited long-term clinical outcomes, mainly on the anterior cruciate ligament (ACL). At this time there are no studies, clinical or preclinical, that specifically examine the effects of cell therapies on other ligaments like fibular collateral ligament (FCL) or posterior cruciate ligament (PCL) injuries. The use of cell therapy agents in the setting of ligament injury has yielded promising results in preclinical in vitro models, but there is a lack of clinical studies to validate these findings. Additionally, there remains only one case study which investigated the effects of cell therapy in ulnar collateral ligament reconstruction. Considering this relative paucity, further research is needed to investigate the utility of cell therapies with respect to ligament injuries. Promising science should not be blindly implemented without clinical trials demonstrating successful, safe, and reproducible patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hauser RA, Dolan EE, Phillips HJ, Newlin AC, Moore RE, Woldin BA. Ligament injury and healing: a review of current clinical diagnostics and therapeutics. Open Rehabil J. 2013;6:1–20.

    Article  Google Scholar 

  2. Nguyen DT, Ramwadhdoebe TH, Van Der Hart CP, Blankevoort L, Tak PP, Niek Van Dijk C. Intrinsic healing response of the human anterior cruciate ligament: an histological study of reattached ACL remnants. J Orthop Res. 2014;32:296–301.

    Google Scholar 

  3. Sciore P, Boykiw R, Hart DA. Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue. J Orthop Res. 1998;16:429–37.

    Google Scholar 

  4. Chamberlain CS, Crowley E, Vanderby R. The spatio-temporal dynamics of ligament healing. Wound Repair Regen. 2009;17:206–15.

    Google Scholar 

  5. Maniar HH, Tawari AA, Suk M, Horwitz DS. The current role of stem cells in orthopaedic surgery. Malaysian Orthop J. 2015;9:1–7.

    Google Scholar 

  6. Ziegler CG, Pietrini SD, Westerhaus BD, Anderson CJ, Wijdicks CA, Johansen S, et al. Arthroscopically pertinent landmarks for tunnel positioning in single-bundle and double-bundle anterior cruciate ligament reconstructions. Am J Sports Med. 2011;39:743–52.

    Google Scholar 

  7. Dallo I, Chahla J, Mitchell JJ, Pascual-Garrido C, Feagin JA, LaPrade RF. Biologic approaches for the treatment of partial tears of the anterior cruciate ligament: a current concepts review. Orthop J Sports Med. 2017;5.

    Google Scholar 

  8. Bray RC, Leonard CA, Salo PT. Vascular physiology and long-term healing of partial ligament tears. J Orthop Res. 2002;20:984–9.

    Google Scholar 

  9. LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L. The anatomy of the medial part of the knee. J Bone Jt Surg. 2007;89:2000.

    Google Scholar 

  10. James EW, Laprade CM, Laprade RF. Anatomy and biomechanics of the lateral side of the knee and surgical implications. Sports Med Arthrosc Rev. 2015;23:2–9.

    Article  Google Scholar 

  11. LaPrade RF, Wentorf FA, Olson EJ, Carlson CS. An in vivo injury model of posterolateral knee instability. Am J Sports Med. 2006;34:1313–21.

    Google Scholar 

  12. Griffith CJ, Wijdicks CA, Goerke U, Michaeli S, Ellermann J, LaPrade RF. Outcomes of untreated posterolateral knee injuries: an in vivo canine model. Knee Surg Sport Traumatol Arthrosc. 2011;19:1192–7.

    Google Scholar 

  13. LaPrade RF, Wentorf FA, Crum JA. Assessment of healing of grade III posterolateral corner injuries: an in vivo model. J Orthop Res. 2004;22:970–5.

    Google Scholar 

  14. LaPrade RF, Ly TV, Wentorf FA, Engebretsen L. The posterolateral attachments of the knee. Am J Sports Med. 2003;31:854–60.

    Google Scholar 

  15. Zhang J, Pan T, Im H-J, Fu FH, Wang JH. Differential properties of human ACL and MCL stem cells may be responsible for their differential healing capacity. BMC Med. 2011;9:68.

    Google Scholar 

  16. Murray MM, Fleming BC. Biology of anterior cruciate ligament injury and repair: kappa delta ann doner vaughn award paper 2013. J Orthop Res. 2013;31:1501–6.

    Google Scholar 

  17. Murray MM, Spector M. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials. 2001;22:2393–402.

    Google Scholar 

  18. Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen–platelet-rich plasma scaffold. J Orthop Res. 2007;25:1007–17.

    Google Scholar 

  19. Murray MM, Martin SD, Martin TL, Spector M. Histological changes in the human anterior cruciate ligament after rupture. J Bone Jt Surg Am. 2000;82:1387–97.

    Google Scholar 

  20. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Google Scholar 

  21. Riekstina U, Muceniece R, Cakstina I, Muiznieks I, Ancans J. Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology. 2008;58:153–62.

    Google Scholar 

  22. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33:1402–16.

    Google Scholar 

  23. Zhang X, Yang M, Lin L, Chen P, Ma KT, Zhou CY, et al. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose - Derived stem cells in vitro and in vivo. Calcif Tissue Int. 2006;79:169–78.

    Google Scholar 

  24. da Silva ML, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20:419–27.

    Google Scholar 

  25. Saether EE, Chamberlain CS, Aktas E, Leiferman EM, Brickson SL, Vanderby R. Primed mesenchymal stem cells alter and improve rat medial collateral ligament healing. Stem Cell Rev Reports. 2016;12:42–53.

    Google Scholar 

  26. Narbona-Carceles J, Vaquero J, Suárez-Sancho SBS, Forriol F, Fernández-Santos ME. Bone marrow mesenchymal stem cell aspirates from alternative sources: is the knee as good as the iliac crest? Injury. 2014;45:S42–7.

    Google Scholar 

  27. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68.

    Google Scholar 

  28. Li WJ, Jiao H, Walczak BE. Emerging opportunities for induced pluripotent stem cells in orthopaedics. J Orthop Transl. 2019;17:73–81.

    Google Scholar 

  29. Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, Jacobs CR. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng Part C Methods. 2009;15(3):431–5.

    Google Scholar 

  30. Feagin JA, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med. 1976;4:95–100.

    Google Scholar 

  31. Geiger MH, Green MH, Monosov A, Akeson WH, Amiel D. An in vitro assay of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) cell migration. Connect Tissue Res. 1994;30:215–24.

    Article  CAS  Google Scholar 

  32. Cooper JA, Bailey LAO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, et al. Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials. 2006;27:2747–54.

    Google Scholar 

  33. Amiel D, Nagineni CN, Choi SH, Lee J. Intrinsic properties of acl and mcl cells and their responses to growth factors. Med Sci Sports Exerc. 1995;27:844–51.

    Google Scholar 

  34. Spindler KP, Clark SW, Nanney LB, Davidson JM. Expression of collagen and matrix metalloproteinases in ruptured human anterior cruciate ligament: an in situ hybridization study. J Orthop Res. 1996;14:857–61.

    Google Scholar 

  35. Nagineni CN, Amiel D, Green MH, Berchuck M, Akeson WH. Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J Orthop Res. 1992;10:465–75.

    Google Scholar 

  36. Frank C, Amiel D, Woo SLY, Akeson W. Normal ligament properties and ligament healing. Clin Orthop Relat Res. 1985;196:15–25.

    Google Scholar 

  37. Samitier G, Marcano AI, Alentorn-Geli E, Cugat R, Farmer KW, Moser MW. Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg. 2015;3:220–40.

    Google Scholar 

  38. Wang S-H, Chien W-C, Chung C-H, Wang Y-C, Lin L-C, Pan R-Y. Long-term results of posterior cruciate ligament tear with or without reconstruction: a nationwide, population-based cohort study. PLoS One. 2018;13:e0205118.

    Google Scholar 

  39. Shelbourne KD, Clark M, Gray T. Minimum 10-year follow-up of patients after an acute, isolated posterior cruciate ligament injury treated nonoperatively. Am J Sports Med. 2013;41:1526–33.

    Google Scholar 

  40. Yoon KH, Bae DK, Song SJ, Cho HJ, Lee JH. A prospective randomized study comparing arthroscopic single-bundle and double-bundle posterior cruciate ligament reconstructions preserving remnant fibers. Am J Sports Med. 2011;39:474–80.

    Google Scholar 

  41. Li Y, Li J, Wang J, Gao S, Zhang Y. Comparison of single-bundle and double-bundle isolated posterior cruciate ligament reconstruction with allograft: a prospective, randomized study. Art Ther. 2014;30:695–700.

    Google Scholar 

  42. LaPrade RF, Cinque ME, Dornan GJ, DePhillipo NN, Geeslin AG, Moatshe G, et al. Double-bundle posterior cruciate ligament reconstruction in 100 patients at a mean 3 years’ follow-up: outcomes were comparable to anterior cruciate ligament reconstructions. Am J Sports Med. 2018;46:1809–18.

    Google Scholar 

  43. Hanhan S, Ejzenberg A, Goren K, Saba F, Suki Y, Sharon S, et al. Skeletal ligament healing using the recombinant human amelogenin protein. J Cell Mol Med. 2016;20:815–24.

    Google Scholar 

  44. Niyibizi C, Kavalkovich K, Yamaji T, Woo SL-Y. Type V collagen is increased during rabbit medial collateral ligament healing. Knee Surg Sport Traumatol Arthrosc. 2000;8:281–5.

    Google Scholar 

  45. Woo SL, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH. The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg Am. 1987;69:1200–11.

    Google Scholar 

  46. Thornton GM, Leask GP, Shrive NG, Frank CB. Early medial collateral ligament scars have inferior creep behaviour. J Orthop Res. 2000;18:238–46.

    Google Scholar 

  47. Plaas AHK, Wong-Palms S, Koob T, Hernandez D, Marchuk L, Frank CB. Proteoglycan metabolism during repair of the ruptured medial collateral ligament in skeletally mature rabbits. Arch Biochem Biophys. 2000;374:35–41.

    Google Scholar 

  48. Indelicato PA, Hermansdorfer J, Huegel M. Nonoperative management of complete tears of the medial collateral ligament of the knee in intercollegiate football players. Clin Orthop Relat Res. 1990:174–7.

    Google Scholar 

  49. Lind M, Jakobsen BW, Lund B, Hansen MS, Abdallah O, Christiansen SE. Anatomical reconstruction of the medial collateral ligament and posteromedial corner of the knee in patients with chronic medial collateral ligament instability. Am J Sports Med. 2009;37:1116–22.

    Google Scholar 

  50. Laprade RF, Wijdicks CA. The management of injuries to the medial side of the knee. J Orthop Sport Phys Ther. 2012;42:221–33.

    Google Scholar 

  51. Kannus P. Nonoperative treatment of Grade II and III sprains of the lateral ligament compartment of the knee. Am J Sports Med. 1989;17:83–8.

    Google Scholar 

  52. Krukhaug Y, Mølster A, Rodt A, Strand T. Lateral ligament injuries of the knee. Knee Surg Sport Traumatol Arthrosc. 1998;6:21–5.

    Google Scholar 

  53. Haddad MA, Budich JM, Eckenrode BJ. Conservative management of an isolated grade iii lateral collateral ligament injury in an adolescent multi-sport athlete: a case report. Int J Sports Phys Ther. 2016;11:596–606.

    Google Scholar 

  54. LaPrade RF, Spiridonov SI, Coobs BR, Ruckert PR, Griffith CJ. Fibular collateral ligament anatomical reconstructions. Am J Sports Med. 2010;38:2005–11.

    Google Scholar 

  55. Moulton SG, Matheny LM, James EW, LaPrade RF. Outcomes following anatomic fibular (lateral) collateral ligament reconstruction. Knee Surg Sport Traumatol Arthrosc. 2015;23:2960–6.

    Google Scholar 

  56. Jang KM, Lim HC, Jung WY, Moon SW, Wang JH. Efficacy and safety of human umbilical cord blood-derived mesenchymal stem cells in anterior cruciate ligament reconstruction of a rabbit model: new strategy to enhance tendon graft healing. Art Ther. 2015;31:1530–9.

    Google Scholar 

  57. Lui PPY, Wong OT, Lee YW. Application of tendon-derived stem cell sheet for the promotion of graft healing in anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42:681–9.

    Google Scholar 

  58. Lim JK. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Art Ther. 2004;20:899–910.

    Google Scholar 

  59. Guo R, Gao L, Xu B. Current evidence of adult stem cells to enhance anterior cruciate ligament treatment: a systematic review of animal trials. Art Ther. 2018;34:331–340.e2.

    Google Scholar 

  60. Takayama K, Kawakami Y, Mifune Y, Matsumoto T, Tang Y, Cummins JH, et al. The effect of blocking angiogenesis on anterior cruciate ligament healing following stem cell transplantation. Biomaterials. 2015;60:9–19.

    Google Scholar 

  61. Mifune Y, Matsumoto T, Ota S, Nishimori M, Usas A, Kopf S, et al. Therapeutic potential of anterior cruciate ligament-derived stem cells for anterior cruciate ligament reconstruction. Cell Transplant. 2012;21:1651–65.

    Google Scholar 

  62. Matsumoto T, Kubo S, Sasaki K, Kawakami Y, Oka S, Sasaki H, et al. Acceleration of tendon-bone healing of anterior cruciate ligament graft using autologous ruptured tissue. Am J Sports Med. 2012;40:1296–302.

    Google Scholar 

  63. Oe K, Kushida T, Okamoto N, Umeda M, Nakamura T, Ikehara S, et al. New strategies for anterior cruciate ligament partial rupture using bone marrow transplantation in rats. Stem Cells Dev. 2011;20:671–9.

    Google Scholar 

  64. Kanaya A, Deie M, Adachi N, Nishimori M, Yanada S, Ochi M. Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy. 2007;23:610–7.

    Google Scholar 

  65. Kanazawa T, Soejima T, Noguchi K, Tabuchi K, Noyama M, Nakamura KI, et al. Tendon-to-bone healing using autologous bone marrow-derived mesenchymal stem cells in ACL reconstruction without a tibial bone tunnel—a histological study. Muscles Ligaments Tendons J. 2014;4:201–6.

    Google Scholar 

  66. Chen CH, Whu SW, Chang CH, Su CI. Gene and protein expressions of bone marrow mesenchymal stem cells in a bone tunnel for tendon-bone healing. Formos J Musculoskelet Disord. 2011;2:85–93.

    Google Scholar 

  67. Soon MYH, Hassan A, Hui JHP, Goh JCH, Lee EH. An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am J Sports Med. 2007;35:962–71.

    Google Scholar 

  68. Van Eijk F, Saris DBF, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ, et al. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng. 2004;10:893–903, Ann Liebert, Inc.

    Google Scholar 

  69. Ge Z, Goh JCH, Lee EH. The effects of bone marrow-derived mesenchymal stem cells and fascia wrap application to anterior cruciate ligament tissue engineering. Cell Transplant. 2005;14:763–73.

    Google Scholar 

  70. Proffen BL, Haslauer CM, Harris CE, Murray MM. Mesenchymal stem cells from the retropatellar fat pad and peripheral blood stimulate ACL fibroblast migration, proliferation, and collagen gene expression. Connect Tissue Res. 2013;54:14–21.

    Google Scholar 

  71. Eagan MJ, Zuk PA, Zhao KW, Bluth BE, Brinkmann EJ, Wu BM, et al. The suitability of human adipose-derived stem cells for the engineering of ligament tissue. J Tissue Eng Regen Med. 2012;6:702–9.

    Google Scholar 

  72. Su Y, Denbeigh JM, Camilleri ET, Riester SM, Parry JA, Wagner ER, et al. Extracellular matrix protein production in human adipose-derived mesenchymal stem cells on three-dimensional polycaprolactone (PCL) scaffolds responds to GDF5 or FGF2. Gene Reports. 2018;10:149–56.

    Google Scholar 

  73. Ter Huurne M, Schelbergen R, Blattes R, Blom A, De Munter W, Grevers LC, et al. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 2012;64:3604–13.

    Google Scholar 

  74. Prager P, Kunz M, Ebert R, Klein-Hitpass L, Sieker J, Barthel T, et al. Mesenchymal stem cells isolated from the anterior cruciate ligament: characterization and comparison of cells from young and old donors. Knee Surg Relat Res. 2018;30:193–205.

    Google Scholar 

  75. Lange-Consiglio A, Tassan S, Corradetti B. Investigating the efficacy of amnion-derived compared with bone marrow-derived mesenchymal stromal cells in equine tendon and ligament injuries. Cytotherapy. 2013;15(8):1011–20.

    Article  CAS  Google Scholar 

  76. Centeno CJ, Pitts J, Al-Sayegh H, Freeman MD. Anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow nucleated cells: a case series. J Pain Res. 2015;8:437–47.

    Google Scholar 

  77. Silva A, Sampaio R, Fernandes R, Pinto E. Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc. 2014;22:66–71.

    Google Scholar 

  78. Wang Y, Shimmin A, Ghosh P, Marks P, Linklater J, Connell D, et al. Safety, tolerability, clinical, and joint structural outcomes of a single intra-articular injection of allogeneic mesenchymal precursor cells in patients following anterior cruciate ligament reconstruction: a controlled double-blind randomised trial. Arthritis Res Ther. 2017;19:180.

    Google Scholar 

  79. Youn GM, Remigio Van Gogh AM, Alvarez A, Shin Yin SS, Chakrabarti MO, McGahan PJ, et al. Stem cell–infused anterior cruciate ligament reconstruction. Arthrosc Tech. 2019;8:e1313–7.

    Google Scholar 

  80. Saether EE, Chamberlain CS, Leiferman EM, Kondratko-Mittnacht JR, Li WJ, Brickson SL, et al. Enhanced medial collateral ligament healing using mesenchymal stem cells: dosage effects on cellular response and cytokine profile. Stem Cell Rev Reports. 2014;10:86–96.

    Google Scholar 

  81. Jiang D, Yang S, Gao P, Zhang Y, Guo T, Lin H, et al. Combined effect of ligament stem cells and umbilical-cord-blood-derived CD34+ cells on ligament healing. Cell Tissue Res. 2015;362:587–95.

    Google Scholar 

  82. Tei K, Matsumoto T, Mifune Y, Ishida K, Sasaki K, Shoji T, et al. Administrations of peripheral blood CD34-positive cells contribute to medial collateral ligament healing via vasculogenesis. Stem Cells. 2008;26:819–30.

    Google Scholar 

  83. Nishimori M, Matsumoto T, Ota S, Kopf S, Mifune Y, Harner C, et al. Role of angiogenesis after muscle derived stem cell transplantation in injured medial collateral ligament. J Orthop Res. 2012;30:627–33.

    Google Scholar 

  84. Hoffman JK, Protzman NM, Malhotra AD. Biologic augmentation of the ulnar collateral ligament in the elbow of a professional baseball pitcher. Case Rep Orthop. 2015;2015:130157.

    Google Scholar 

  85. Chambers MC, Fu FH. Editorial commentary: adult stem cell potential to enhance healing of the anterior cruciate ligament. Art Ther. 2018;34:341–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

Robert S. Dean declares that he has no conflict of interest.

Nicholas N. DePhillipo declares that he has no conflict of interest.

Robert F. LaPrade reports grants and personal fees from Arthrex, Inc, grants from Linvatec, grants and personal fees from Ossur, grants and personal fees from Smith & Nephew, outside the submitted work.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dean, R.S., DePhillipo, N.N., LaPrade, R.F. (2022). Ligament Lesions: Cell Therapy. In: Filardo, G., Mandelbaum, B.R., Muschler, G.F., Rodeo, S.A., Nakamura, N. (eds) Orthobiologics. Springer, Cham. https://doi.org/10.1007/978-3-030-84744-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84744-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84743-2

  • Online ISBN: 978-3-030-84744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics