Skip to main content

Patellar Tendinopathy: Cell Therapy

  • Chapter
  • First Online:
Orthobiologics
  • 1627 Accesses

Abstract

Patellar tendinopathy is a common cause of knee pain, especially in young athletes. The pathophysiology of patellar tendinopathy has not been clearly understood, and the term “tendinopathy” is still used mixed with “tendinitis” and “tendinosis.” With the recent advance of molecular biology, inflammation is reported to be crucial in the initiation and progression of tendinopathy. If repeated microtrauma disrupts the balance between the pro-inflammatory system and the pro-resolving system, and damages accumulate beyond the reparative capacity of tendon, then tendon develops and progresses into the degenerative inflammatory phase which results in fibrovascular scar tissue formation with inferior histological, biomechanical properties and consequently poorer functional recovery. Thus, optimal treatments for patellar tendinopathy should address inflammation and degeneration. So far, many treatment approaches including medicine, injection, exercise, and extracorporeal shock wave therapy have been proposed. However, most of them are only for symptomatic relief, and outcomes are still controversial both of which would claim the necessity of alternative strategies that could address the pathophysiology of tendinopathy and effectively manage clinical symptoms. Among them, cell therapy has been proposed as a promising option. In this chapter, the experimental evidence and clinical outcomes of current cell therapies are summarized and grouped in one of three categories: stem/stromal cells, differentiated cells, and minimally manipulated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz A, Watson JN, Hutchinson MR. Patellar tendinopathy. Sports Health. 2015;7(5):415–20.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vander Doelen T, Jelley W. Non-surgical treatment of patellar tendinopathy: a systematic review of randomized controlled trials. J Sci Med Sport. 2020;23(2):118–24.

    Article  PubMed  Google Scholar 

  3. Lian OB, Engebretsen L, Bahr R. Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med. 2005;33(4):561–7.

    Article  PubMed  Google Scholar 

  4. Peers KH, Lysens RJ. Patellar tendinopathy in athletes: current diagnostic and therapeutic recommendations. Sports Med (Auckland, NZ). 2005;35(1):71–87.

    Article  Google Scholar 

  5. Kannus P, Natri A. Etiology and pathophysiology of tendon ruptures in sports. Scand J Med Sci Sports. 1997;7(2):107–12.

    Article  CAS  PubMed  Google Scholar 

  6. Rees JD, Stride M, Scott A. Tendons—time to revisit inflammation. Br J Sports Med. 2014;48(21):1553–7.

    Article  PubMed  Google Scholar 

  7. Tang C, Chen Y, Huang J, Zhao K, Chen X, Yin Z, et al. The roles of inflammatory mediators and immunocytes in tendinopathy. J Orthopaed Translat. 2018;14:23–33.

    Article  Google Scholar 

  8. Battery L, Maffulli N. Inflammation in overuse tendon injuries. Sports Med Arthrosc Rev. 2011;19(3):213–7.

    Article  PubMed  Google Scholar 

  9. D’Addona A, Maffulli N, Formisano S, Rosa D. Inflammation in tendinopathy. Surgeon. 2017;15(5):297–302.

    Article  PubMed  Google Scholar 

  10. Millar NL, Murrell GA, McInnes IB. Inflammatory mechanisms in tendinopathy—towards translation. Nat Rev Rheumatol. 2017;13(2):110–22.

    Article  CAS  PubMed  Google Scholar 

  11. Dakin SG, Dudhia J, Smith RK. Resolving an inflammatory concept: the importance of inflammation and resolution in tendinopathy. Vet Immunol Immunopathol. 2014;158(3–4):121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Costa-Almeida R, Calejo I, Gomes ME. Mesenchymal stem cells empowering tendon regenerative therapies. Int J Mol Sci. 2019;20(12).

    Google Scholar 

  13. Figueroa D, Figueroa F, Calvo R. Patellar tendinopathy: diagnosis and treatment. J Am Acad Orthop Surg. 2016;24(12):e184–e92.

    Article  PubMed  Google Scholar 

  14. Larsson ME, Kall I, Nilsson-Helander K. Treatment of patellar tendinopathy—a systematic review of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc. 2012;20(8):1632–46.

    Article  PubMed  Google Scholar 

  15. van Ark M, Zwerver J, van den Akker-Scheek I. Injection treatments for patellar tendinopathy. Br J Sports Med. 2011;45(13):1068–76.

    Article  PubMed  Google Scholar 

  16. Everhart JS, Cole D, Sojka JH, Higgins JD, Magnussen RA, Schmitt LC, et al. Treatment options for patellar tendinopathy: a systematic review. Arthroscopy. 2017;33(4):861–72.

    Article  PubMed  Google Scholar 

  17. Gaida JE, Cook J. Treatment options for patellar tendinopathy: critical review. Curr Sports Med Rep. 2011;10(5):255–70.

    Article  PubMed  Google Scholar 

  18. Bahr R, Fossan B, Loken S, Engebretsen L. Surgical treatment compared with eccentric training for patellar tendinopathy (Jumper’s Knee). A randomized, controlled trial. J Bone Joint Surg Am. 2006;88(8):1689–98.

    Article  PubMed  Google Scholar 

  19. Clarke AW, Alyas F, Morris T, Robertson CJ, Bell J, Connell DA. Skin-derived tenocyte-like cells for the treatment of patellar tendinopathy. Am J Sports Med. 2011;39(3):614–23.

    Article  PubMed  Google Scholar 

  20. Paavola M, Kannus P, Jarvinen TA, Jarvinen TL, Jozsa L, Jarvinen M. Treatment of tendon disorders. Is there a role for corticosteroid injection? Foot Ankle Clin. 2002;7(3):501–13.

    Article  PubMed  Google Scholar 

  21. Kongsgaard M, Kovanen V, Aagaard P, Doessing S, Hansen P, Laursen AH, et al. Corticosteroid injections, eccentric decline squat training and heavy slow resistance training in patellar tendinopathy. Scand J Med Sci Sports. 2009;19(6):790–802.

    Article  CAS  PubMed  Google Scholar 

  22. Fredberg U, Bolvig L, Pfeiffer-Jensen M, Clemmensen D, Jakobsen BW, Stengaard-Pedersen K. Ultrasonography as a tool for diagnosis, guidance of local steroid injection and, together with pressure algometry, monitoring of the treatment of athletes with chronic jumper’s knee and Achilles tendinitis: a randomized, double-blind, placebo-controlled study. Scand J Rheumatol. 2004;33(2):94–101.

    Article  CAS  PubMed  Google Scholar 

  23. Dean BJ, Lostis E, Oakley T, Rombach I, Morrey ME, Carr AJ. The risks and benefits of glucocorticoid treatment for tendinopathy: a systematic review of the effects of local glucocorticoid on tendon. Semin Arthritis Rheum. 2014;43(4):570–6.

    Article  CAS  PubMed  Google Scholar 

  24. van der Worp H, van den Akker-Scheek I, van Schie H, Zwerver J. ESWT for tendinopathy: technology and clinical implications. Knee Surg Sports Traumatol Arthrosc. 2013;21(6):1451–8.

    Article  PubMed  Google Scholar 

  25. Nuhmani S. Injection therapies for patellar tendinopathy. Phys Sportsmed. 2019:1–6.

    Google Scholar 

  26. Ferrero G, Fabbro E, Orlandi D, Martini C, Lacelli F, Serafini G, et al. Ultrasound-guided injection of platelet-rich plasma in chronic Achilles and patellar tendinopathy. J Ultrasound. 2012;15(4):260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Charousset C, Zaoui A, Bellaiche L, Bouyer B. Are multiple platelet-rich plasma injections useful for treatment of chronic patellar tendinopathy in athletes? A prospective study. Am J Sports Med. 2014;42(4):906–11.

    Article  PubMed  Google Scholar 

  28. Zayni R, Thaunat M, Fayard JM, Hager JP, Carrillon Y, Clechet J, et al. Platelet-rich plasma as a treatment for chronic patellar tendinopathy: comparison of a single versus two consecutive injections. Muscles Ligaments Tendons J. 2015;5(2):92–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kaux JF, Croisier JL, Forthomme B, Le Goff C, Buhler F, Savanier B, et al. Using platelet-rich plasma to treat jumper’s knees: exploring the effect of a second closely-timed infiltration. J Sci Med Sport. 2016;19(3):200–4.

    Article  CAS  PubMed  Google Scholar 

  30. James SL, Ali K, Pocock C, Robertson C, Walter J, Bell J, et al. Ultrasound guided dry needling and autologous blood injection for patellar tendinosis. Br J Sports Med. 2007;41(8):518–21; discussion 22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Alfredson H, Ohberg L. Neovascularisation in chronic painful patellar tendinosis—promising results after sclerosing neovessels outside the tendon challenge the need for surgery. Knee Surg Sports Traumatol Arthrosc. 2005;13(2):74–80.

    Article  PubMed  Google Scholar 

  32. Hoksrud A, Bahr R. Ultrasound-guided sclerosing treatment in patients with patellar tendinopathy (jumper’s knee). 44-month follow-up. Am J Sports Med. 2011;39(11):2377–80.

    Article  PubMed  Google Scholar 

  33. Rees JD, Wilson AM, Wolman RL. Current concepts in the management of tendon disorders. Rheumatology (Oxford). 2006;45(5):508–21.

    Article  CAS  Google Scholar 

  34. Osborne H, Anderson L, Burt P, Young M, Gerrard D. Australasian College of Sports Physicians-position statement: the place of mesenchymal stem/stromal cell therapies in sport and exercise medicine. Br J Sports Med. 2016;50(20):1237–44.

    Article  PubMed  Google Scholar 

  35. Luo Q, Song G, Song Y, Xu B, Qin J, Shi Y. Indirect co-culture with tenocytes promotes proliferation and mRNA expression of tendon/ligament related genes in rat bone marrow mesenchymal stem cells. Cytotechnology. 2009;61(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Perucca Orfei C, Viganò M, Pearson JR, Colombini A, De Luca P, Ragni E, et al. In vitro induction of tendon-specific markers in tendon cells, adipose- and bone marrow-derived stem cells is dependent on TGFβ3, BMP-12 and ascorbic acid stimulation. Int J Mol Sci. 2019;20(1).

    Google Scholar 

  37. Lui PPY, Rui YF, Ni M, Chan KM. Tenogenic differentiation of stem cells for tendon repair—what is the current evidence? J Tissue Eng Regen Med. 2011;5(8):e144–e63.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang B, Luo Q, Halim A, Ju Y, Morita Y, Song G. Directed differentiation and paracrine mechanisms of mesenchymal stem cells: potential implications for tendon repair and regeneration. Curr Stem Cell Res Ther. 2017;12(6):447–54.

    PubMed  Google Scholar 

  39. Wang D, Jiang X, Lu A, Tu M, Huang W, Huang P. BMP14 induces tenogenic differentiation of bone marrow mesenchymal stem cells in vitro. Exp Ther Med. 2018;16(2):1165–74.

    PubMed  PubMed Central  Google Scholar 

  40. Park A, Hogan MV, Kesturu GS, James R, Balian G, Chhabra AB. Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Eng Part A. 2010;16(9):2941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo J, Chan KM, Zhang JF, Li G. Tendon-derived stem cells undergo spontaneous tenogenic differentiation. Exp Cell Res. 2016;341(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  42. Xu K, Sun Y, Kh Al-Ani M, Wang C, Sha Y, Sung KP, et al. Synergistic promoting effects of bone morphogenetic protein 12/connective tissue growth factor on functional differentiation of tendon derived stem cells and patellar tendon window defect regeneration. J Biomech. 2018;66:95–102.

    Article  PubMed  Google Scholar 

  43. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219–27.

    Article  CAS  PubMed  Google Scholar 

  44. Lee CH, Lee FY, Tarafder S, Kao K, Jun Y, Yang G, et al. Harnessing endogenous stem/progenitor cells for tendon regeneration. J Clin Invest. 2015;125(7):2690–701.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guevara-Alvarez A, Schmitt A, Russell RP, Imhoff AB, Buchmann S. Growth factor delivery vehicles for tendon injuries: mesenchymal stem cells and platelet rich plasma. Muscles Ligaments Tendons J. 2014;4(3):378–85.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dale TP, Mazher S, Webb WR, Zhou J, Maffulli N, Chen GQ, et al. Tenogenic differentiation of human embryonic stem cells. Tissue Eng Part A. 2018;24(5–6):361–8.

    Article  CAS  PubMed  Google Scholar 

  47. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15(1):36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu W, Wang Y, Liu E, Sun Y, Luo Z, Xu Z, et al. Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model. Tissue Eng Part A. 2013;19(21–22):2439–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deng D, Liu W, Xu F, Wu XL, Wei X, Zhong B, et al. In vitro tendon engineering using human dermal fibroblasts. Zhonghua Yi Xue Za Zhi. 2008;88(13):914–8.

    CAS  PubMed  Google Scholar 

  50. Zhang Q, Yang Z, Peng W. [Experimental study on biological characteristics of tenocyte and fibroblast in rabbit]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 1997;11(1):46–8.

    Google Scholar 

  51. Evans CE, Trail IA. Fibroblast-like cells from tendons differ from skin fibroblasts in their ability to form three-dimensional structures in vitro. J Hand Surg (Edinburgh, Scotland). 1998;23(5):633–41.

    Article  CAS  Google Scholar 

  52. Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev. 2015;84:240–56.

    Article  CAS  PubMed  Google Scholar 

  53. Sampson S, Botto-van Bemden A, Aufiero D. Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. Phys Sportsmed. 2013;41(3):7–18.

    Article  PubMed  Google Scholar 

  54. Steinert AF, Rackwitz L, Gilbert F, Noth U, Tuan RS. Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med. 2012;1(3):237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Polly SS, Nichols AEC, Donnini E, Inman DJ, Scott TJ, Apple SM, et al. Adipose-derived stromal vascular fraction and cultured stromal cells as trophic mediators for tendon healing. J Orthop Res. 2019;37(6):1429–39.

    Article  CAS  PubMed  Google Scholar 

  56. Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, et al. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng. 1999;5(3):267–77.

    Article  CAS  PubMed  Google Scholar 

  57. Hankemeier S, Hurschler C, Zeichen J, van Griensven M, Miller B, Meller R, et al. Bone marrow stromal cells in a liquid fibrin matrix improve the healing process of patellar tendon window defects. Tissue Eng Part A. 2009;15(5):1019–30.

    Article  CAS  PubMed  Google Scholar 

  58. Awad HA, Boivin GP, Dressler MR, Smith FN, Young RG, Butler DL. Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res. 2003;21(3):420–31.

    Article  CAS  PubMed  Google Scholar 

  59. Yin Z, Guo J, Wu TY, Chen X, Xu LL, Lin SE, et al. Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem Cells Transl Med. 2016;5(8):1106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tan Q, Lui PP, Rui YF, Wong YM. Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Eng Part A. 2012;18(7–8):840–51.

    Article  CAS  PubMed  Google Scholar 

  61. Stanco D, Vigano M, Perucca Orfei C, Di Giancamillo A, Peretti GM, Lanfranchi L, et al. Multidifferentiation potential of human mesenchymal stem cells from adipose tissue and hamstring tendons for musculoskeletal cell-based therapy. Regen Med. 2015;10(6):729–43.

    Article  CAS  PubMed  Google Scholar 

  62. Lui PP, Wong OT, Lee YW. Transplantation of tendon-derived stem cells pre-treated with connective tissue growth factor and ascorbic acid in vitro promoted better tendon repair in a patellar tendon window injury rat model. Cytotherapy. 2016;18(1):99–112.

    Article  CAS  PubMed  Google Scholar 

  63. Ni M, Lui PP, Rui YF, Lee YW, Lee YW, Tan Q, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res. 2012;30(4):613–9.

    Article  CAS  PubMed  Google Scholar 

  64. Lui PP, Kong SK, Lau PM, Wong YM, Lee YW, Tan C, et al. Allogeneic tendon-derived stem cells promote tendon healing and suppress immunoreactions in hosts: in vivo model. Tissue Eng Part A. 2014;20(21–22):2998–3009.

    Article  CAS  PubMed  Google Scholar 

  65. Tan C, Lui PP, Lee YW, Wong YM. Scx-transduced tendon-derived stem cells (TDSCS) promoted better tendon repair compared to mock-transduced cells in a rat patellar tendon window injury model. PLoS One. 2014;9(5):e97453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Becerra P, Valdes Vazquez MA, Dudhia J, Fiske-Jackson AR, Neves F, Hartman NG, et al. Distribution of injected technetium(99m)-labeled mesenchymal stem cells in horses with naturally occurring tendinopathy. J Orthop Res. 2013;31(7):1096–102.

    Article  CAS  PubMed  Google Scholar 

  67. Mackley Jennifer R, Ando J, Herzyk P, Winder SJ. Phenotypic responses to mechanical stress in fibroblasts from tendon, cornea and skin. Biochem J. 2006;396(2):307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Evans CE, Trail IA. Fibroblast-like cells from tendons differ from skin fibroblasts in their ability to form three-dimensional structures in vitro. J Hand Surg Br. 1998;23(5):633–41.

    Article  CAS  PubMed  Google Scholar 

  69. Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther. 2012;3(3):20.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pascual-Garrido C, Rolon A, Makino A. Treatment of chronic patellar tendinopathy with autologous bone marrow stem cells: a 5-year-followup. Stem Cells Int. 2012;2012:953510.

    Article  PubMed  Google Scholar 

  71. Rodas G, Soler R, Balius R, Alomar X, Peirau X, Alberca M, et al. Autologous bone marrow expanded mesenchymal stem cells in patellar tendinopathy: protocol for a phase I/II, single-centre, randomized with active control PRP, double-blinded clinical trial. J Orthop Surg Res. 2019;14(1):441.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris H. Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jo, C.H., Oh, S. (2022). Patellar Tendinopathy: Cell Therapy. In: Filardo, G., Mandelbaum, B.R., Muschler, G.F., Rodeo, S.A., Nakamura, N. (eds) Orthobiologics. Springer, Cham. https://doi.org/10.1007/978-3-030-84744-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84744-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84743-2

  • Online ISBN: 978-3-030-84744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics