Skip to main content

Fractional Integral Operators in Linear Spaces

  • Chapter
  • First Online:
Mathematical Analysis in Interdisciplinary Research

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 179))

  • 744 Accesses

Abstract

In this chapter, we introduce some new fractional integral operators and fractional area balance operators in n-dimensional linear spaces. The corresponding integral operator inequalities are established. They are significant improvement and generalizations of many known and new classes of fractional integral operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuang J.C., Applied Inequalities, 5th.edu.Shangdong Science and Technology Press, Jinan(2021), (in Chinese).

    Google Scholar 

  2. Kilbas, A.A., Srivgstava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol.204, Elsevier, New York, 2006.

    Google Scholar 

  3. Mubeen, S., Habibullah, G.M., k − fractional integrals and applications, Int.J.Contemp.Math.Sci., 2012, 7:89–94.

    Google Scholar 

  4. Mubeen, S., Iqbal, S., Grüss type integral inequalities for generalized Riemann-Liouville k − fractional integrals, J.Inequal.Appl., 2016:109.

    Google Scholar 

  5. Sarikaya, M.Z., Dahmani, Z., Kiris, M.E., Ahmad, F., (k, s) −Riemann-Liouville fractional integral and applications, Hacet.J.Math.Stat., 2016, 45(1):77–89.

    Google Scholar 

  6. Set.E., Tomar, M., Sarkaya, M.Z., On generalized Grüss type inequalities for k − fractional integrals, Appl.Math.Comp., 2005, 8(269):29–34.

    Google Scholar 

  7. Abbas, G., et al., Generalizations of some fractional integral inequalities via generalized Mittag-Leffer function, J.Inequal.Appl., 2017:121.

    Google Scholar 

  8. da Sousa, J.V., de Oliveira, E.C., On the ψ − Hilfer fractional derivative, Commun.Nonlinear Sci.Numer.Simul., 2018, 60:72–91.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhao Y., et al., Hermite-Hadamard type inequalities involving ψ − Riemann-Liouville fractional integrals via s − convex functions, J.Inequal.Appl., 2020:128.

    Google Scholar 

  10. Dragomir, S.S., Inequalities for the area balance of absolutely continuous functions, Stud.Univ.Babes-Bolyai Math., 2018, 63(1):37–57.

    Article  MathSciNet  MATH  Google Scholar 

  11. Khan, J.U., Khan, M.A., Generalized conformable fractional integral operators, J.Comput.Appl.Math., 2019, 346:378–389.

    Article  MathSciNet  MATH  Google Scholar 

  12. Rashid, S., et al., New generalized reverse Minkowski and related integral inequalities involving generalized fractional conformable integrals, J.Inequal.Appl., 2020:177.

    Google Scholar 

  13. Jarad, F., et al., On a new class of fractional operators, Adv.Differ.Equ., 2017, 247.

    Google Scholar 

  14. Iscan Imdat, Jensen-Mercer inequality for GA − convex functions and some related inequalities, J.Inequal.Appl., 2020:212.

    Google Scholar 

  15. Kuang J.C., Norm inequalities for generalized Laplace transforms // Raigorodskii, A., Rassias, M.Th., Editors, Trigonometric Sums and Their Applications, Springer, 2020.

    Google Scholar 

  16. Kuang J.C., Some new inequalities for fractional integral operators, // Rassias, Th.M., Approximation and Computation in Science and Engineering, Springer, 2021.

    Google Scholar 

  17. Sarikaya, M, Z., On the Hermite-Hadarmard - type inequalities for co-ordinated convex function via fractional integrals . Integral Transforms Spec.Funct.2014, 25(2), 134–147.

    MathSciNet  MATH  Google Scholar 

  18. Erden, S., Budak, H., Sarikaya, M.Z., Iftikhar, S., and Kumam, P., Fractional Ostrowski type inequalities for bounded functions, J.Inequal.Appl., 2020:123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuang, J. (2021). Fractional Integral Operators in Linear Spaces. In: Parasidis, I.N., Providas, E., Rassias, T.M. (eds) Mathematical Analysis in Interdisciplinary Research. Springer Optimization and Its Applications, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-030-84721-0_22

Download citation

Publish with us

Policies and ethics