## Abstract

We deal with the study of several general equilibrium models by using the variational inequality theory. The theory of variational inequalities was introduced in the sixties of the past century by Fichera (1964), and Lions and Stampacchia (1965), as an innovative and effective method to solve equilibrium problems arising in mathematical physics. Afterward this theory turned out as a powerful tool, and it was used to analyze different kinds of equilibrium problems.

## Access this chapter

Tax calculation will be finalised at checkout

Purchases are for personal use only

### Similar content being viewed by others

## Notes

- 1.
Recall that \(\mathcal {M}_{S, A}\) is the set of all

*S*×*A*dimensional matrices of real numbers. - 2.
Following standard notation, for vectors \(y:=\left ( y_{i}\right ) _{i=1}^{n}, z:=\left ( z_{i}\right ) _{i=1}^{n}\in \mathbb {R}^{n}\);

*y*≥*z*means that for \(i\in \left \{ 1, \ldots , n\right \}, \)*y*_{i}≥*z*_{i};*y*>>*z*means that for \(i\in \left \{ 1, \ldots , n\right \}, \)*y*_{i}>*z*_{i}, and*y*>*z*means that*y*≥*z*but*y*≠*z*. - 3.
In the symbol

*Q*^{u}, the superscript*u*stays for “unrestricted.” - 4.
For vectors \(y, z\in \mathbb {R}^{n}\),

*y*≥*z*means that for*i*= 1, …,*n*,*y*_{i}≥*z*_{i};*y*>>*z*means that for*i*= 1, …,*n*,*y*_{i}>*z*_{i}, and*y*>*z*means that*y*≥*z*but*y*≠*z*. - 5.
rec

*B*_{h}is the recession cone of*B*_{h}, which is defined as follows \(\text{rec}B_h=\left \{ y\in \mathbb {R}^{A}:\forall x^{0}\in B_h, \forall \lambda \geq 0, x^{0}+\lambda y\in B_h\right \}.\) - 6.
\(\mathcal {F}\) stays for financial structure.

- 7.
Recall that, from Remark 5, if \(\left ( p^{sC}\right ) _{s\in \mathcal {S}}\in \mathbb {R}_{++}^{S}\), then

*Q*_{h}(*Y*,*B*_{h}) =*Q*_{h}(*P*^{⋅},*Y*,*B*_{h}). - 8.
Observe that \(\frac {1}{C}\geq \frac {1}{n}\) since by assumption

*n*≥*C*.

## References

G. Anello, M.B. Donato, M. Milasi, “A quasi-variational approach to a competitive economic equilibrium problem without strong monotonicity assumption”,

*Journal of Global Optimization*,**48**n. 2, pp. 279–287(2010).G. Anello, M.B. Donato, M. Milasi, “Variational methods for equilibrium problems involving quasi-concave utility functions”,

*Optimization and Engineering*,**13**n. 2, pp. 169–179 (2012).Z. Aouani, B. Cornet, “Existence of financial equilibria with restricted participation”,

*Journal of Mathematical Economics*,**45**, pp. 772–786, (2009).K.J. Arrow, F.H. Hahn, General Competitive Analysis. Holden-Day, Inc., San Francisco (1971).

D. Aussel and N. Hadjisavvas,

*Adjusted sublevel sets, normal operator and quasiconvex programming*, SIAM Journal of Optimization,**16**, 358–367 (2005).D. Aussel, J. Dutta,

*Generalized Nash equilibrium problem, variational inequality and quasiconvexity*. Operation Research Letters,**36**, 461–464 (2008).D. Aussel, J. Cotrina,

*Quasimonotone Quasivariational Inequalities: Existence Results and Applications*, Journal of Optimization Theory and Applications,**158**, n. 3, 637–652 (2013).D. Aussel and J. Cotrina,

*Stability of Quasimonotone Variational Inequality Under Sign-Continuity*, Journal of Optimization Theory and Applications,**158**, 653–667 (2013).A. Barbagallo, P. Daniele, S. Giuffrè, A. Maugeri,

*Variational approach for a general financial equilibrium problem: The Deficit Formula, the Balance Law and the Liability Formula. A path to the economy recovery*, European Journal of Operational Research,**237**, n. 1, 231–244 (2014).I. Benedetti, M.B. Donato, M. Milasi, “Existence for Competitive Equilibrium by Means of Generalized Quasivariational Inequalities”,

*Abstract and Applied Analysis*, article n. 648986 (2013).D. Chan, J.S. Pang (1982). The generalized quasi-variational inequality problem. Math. Oper. Res. 7: 211–222.

P. Daniele, L. Scrimali, Strong Nash equilibria for cybersecurity investments with nonlinear budget constraints. New trends in emerging complex real life problems, 199–207, AIRO Springer Ser., 1, Springer, Cham, 2018.

G. Debreu, Theory of Value, An Axiomatic Analysis of Economic Equilibrium. New York: Wiley (1959).

M.B. Donato, A. Maugeri, M. Milasi, C. Vitanza, “Duality theory for a dynamic Walrasian pure exchange economy”,

*Pacific Journal of Optimization*,**4**n. 3, pp. 537–547 (2008).M.B. Donato, M. Milasi, “Lagrangean variables in infinite dimensional spaces for a dynamic economic equilibrium problem”,

*Nonlinear Analysis-Theory Methods and Applications*,**74**n. 15, pp. 5048–5056 (2011).M.B. Donato, M. Milasi, C. Vitanza, “An existence result of a quasi-variational inequality associated to an equilibrium problem”,

*Journal of Global Optimization*,**40**n. 1–3, pp. 87–97 (2008).M.B. Donato, M. Milasi, C. Vitanza, “Quasi-variational approach of a competitive economic equilibrium problem with utility function: existence of equilibrium”,

*Mathematical Models and Methods in Applied Sciences*,**18**, n. 3, pp. 351–367 (2008).M.B. Donato, M. Milasi, A. Villanacci, “Incomplete financial markets model with nominal assets: variational approach”,

*Journal of Mathematical Analysis and Applications*,**457**, pp. 1353–1369 (2018).M.B. Donato, M. Milasi, A. Villanacci, “Variational formulation of a general equilibrium model with incomplete financial markets and numeraire assets: existence”,

*Journal of Optimization Theory and Application*,**179**(2), pp. 425–451 (2018).M.B. Donato, M. Milasi, A. Villanacci, “Restricted Participation on Financial Markets: A General Equilibrium Approach Using Variational Inequality Methods”,

*Netw Spat Econ*, (2020). https://doi.org/10.1007/s11067-019-09491-4M.B. Donato, M. Milasi, C. Vitanza, “Quasivariational inequalities for a dynamic competitive economic equilibrium problem”,

*Journal of Inequalities and Applications*, pp.1–17, article number 519623 (2009).M.B. Donato, M. Milasi, C. Vitanza, “A new contribution to a dynamic competitive equilibrium problem”,

*Applied Mathematics Letters*,**23**n. 2, pp. 148–151 (2010).M.B. Donato, M.Milasi, C. Vitanza, “Variational problem, generalized convexity and application to an equilibrium problem”,

*Numerical Functional Analysis and Optimization*,**35**n. 7–9, pp. 962–983 (2014).M.B. Donato, M. Milasi, C. Vitanza, “Evolutionary quasi-variational inequality for a production economy”,

*Nonlinear Analysis: Real World Applications*, pp. 328–336 (2018).M.B. Donato, M. Milasi, C. Vitanza, “Generalized variational inequality and general equilibrium problem”,

*Journal of Convex Analysis*, 25 n. 2, pp. 515–527 (2018).M.B. Donato, M. Milasi, C. Vitanza, “Quasivariational inequalities for a dynamic competitive economic equilibrium problem”,

*Journal of Inequality and Applications*, 519623 (2009).G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di signorini con ambigue condizioni al contorno, Mem. Accad. Naz. Lincei (1964) 91–140.

J. Lions, G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. (1967) 493–519.

M. Milasi, C. Vitanza, Variational inequality and evolutionary market disequilibria: the case of quantity formulation. Variational analysis and applications, 681–696, Nonconvex Optim. Appl., 79, Springer, New York, 2005.

G. Stampacchia, Variational Inequalities. In: Ghizzetti, A. (ed.): Theory and Applications of Monotone Operators, pp. 101–191. Edizioni Oderisi, Gubbio (1969)

D. Kinderlehrer, G. Stampacchia, An introduction to variational inequaities and their applications, Academic Press, (1980)

N.X. Tan, (1985). Quasi-variational inequality in topological linear locally convex Hausdorff spaces.

*Math. Nachr.*122, 231–245.A. Villanacci, L. Carosi, P. Benevieri, A. Battinelli, Differential Topology and General Equilibrium with Complete and Incomplete Markets, Kluwer Academic Publishers (2002).

J. Werner, “Equilibrium in economies with incomplete financial markets”,

*Journal of Economic Theory*,**36**, pp. 110–119 (1985).

## Author information

### Authors and Affiliations

### Corresponding author

## Editor information

### Editors and Affiliations

## Rights and permissions

## Copyright information

© 2021 Springer Nature Switzerland AG

## About this chapter

### Cite this chapter

Donato, M.B., Maugeri, A., Milasi, M., Villanacci, A. (2021). Variational Inequalities and General Equilibrium Models. In: Parasidis, I.N., Providas, E., Rassias, T.M. (eds) Mathematical Analysis in Interdisciplinary Research. Springer Optimization and Its Applications, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-030-84721-0_11

### Download citation

DOI: https://doi.org/10.1007/978-3-030-84721-0_11

Published:

Publisher Name: Springer, Cham

Print ISBN: 978-3-030-84720-3

Online ISBN: 978-3-030-84721-0

eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)