Skip to main content

Validating Cancer Quality of Life Assessment Tools: Psychometric Considerations

  • 172 Accesses

Abstract

Quality of life is an important endpoint in oncology clinical trials. In order to have a valid and reliable interpretation of the results observed, it is essential to use validated QoL questionnaire for the population of interest. Therefore, the psychometric properties of any newly developed QoL questionnaire should be assessed before it is used in any study. These properties are numerous and can be divided into three domains, namely, the validity, the reliability, and the responsiveness. The interpretability of a QoL questionnaire is another important characteristic to allow a qualitative appraisal of the QoL level and change over time. For most of these properties, statistical analyses are used with recommendations to consider the property as reached. As for any study, these analyses should be made with an appropriate sample size. Therefore, experts proposed recommendations on minimum sample size requirement.

Keywords

  • Psychometric properties
  • Validation
  • Reliability
  • Responsiveness
  • Interpretability
  • Sample size

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-84702-9_7
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-84702-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  1. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, Bouter LM, de Vet HC. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63:737–45.

    CrossRef  Google Scholar 

  2. Terwee CB, Prinsen CAC, Chiarotto A, Westerman MJ, Patrick DL, Alonso J, Bouter LM, de Vet HCW, Mokkink LB. COSMIN methodology for evaluating the content validity of patient-reported outcome measures: a Delphi study. Qual Life Res. 2018;27:1159–70.

    CrossRef  Google Scholar 

  3. Arraras JI, Greimel E, Sezer O, Chie WC, Bergenmar M, Costantini A, Young T, Vlasic KK, Velikova G. An international validation study of the EORTC QLQ-INFO25 questionnaire: an instrument to assess the information given to cancer patients. Eur J Cancer. 2010;46:2726–38.

    CrossRef  Google Scholar 

  4. Beaton DE, Bombardier C, Guillemin F, Ferraz MB. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine (Phila Pa 1976). 2000;25:3186–91.

    CrossRef  Google Scholar 

  5. Guillemin F, Bombardier C, Beaton D. Cross-cultural adaptation of health-related quality of life measures: literature review and proposed guidelines. J Clin Epidemiol. 1993;46:1417–32.

    CrossRef  Google Scholar 

  6. Quinten C, Martinelli F, Coens C, Sprangers MA, Ringash J, Gotay C, Bjordal K, Greimel E, Reeve BB, Maringwa J, et al. A global analysis of multitrial data investigating quality of life and symptoms as prognostic factors for survival in different tumor sites. Cancer. 2014;120:302–11.

    CrossRef  Google Scholar 

  7. Terwee CB, Bot SD, de Boer MR, van der Windt DA, Knol DL, Dekker J, Bouter LM, de Vet HC. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007;60:34–42.

    CrossRef  Google Scholar 

  8. Johnson C, Aaronson N, Blazeby J, Bottomley A, Fayers P, Koller M, Kuliś D, Ramage J, Sprangers M, Velikova G. Guidelines for developing questionnaire modules. On Behalf of EORTC Quality of Life Group; 2011.

    Google Scholar 

  9. Kaiser HF. Coefficient alpha for a principal component and the Kaiser-Guttman rule. Psychol Rep. 1991;68:855–8.

    CrossRef  Google Scholar 

  10. Kline RB. Principles and practice of structural equation modeling. Guilford Publications; 2015.

    Google Scholar 

  11. Hooper D, Coughlan J, Mullen M. Structural equation modelling: guidelines for determining model fit. Electron J Bus Res Methods. 2008;6(1):53–60.

    Google Scholar 

  12. Edelen MO, Reeve BB. Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Qual Life Res. 2007;16(Suppl 1):5–18.

    CrossRef  Google Scholar 

  13. Xia J, Tang Z, Wu P, Wang J, Yu J. Use of item response theory to develop a shortened version of the EORTC QLQ-BR23 scales. Sci Rep. 2019;9:1764.

    CrossRef  Google Scholar 

  14. de Ayala RJ. The theory and practice of item response theory. Guilford Press; 2013.

    Google Scholar 

  15. Masters GN. A Rasch model for partial credit scoring. Psychometrika. 1982;47:149–74.

    CrossRef  Google Scholar 

  16. Andrich D. A rating formulation for ordered response categories. Psychometrika. 1978;43:561–73.

    CrossRef  Google Scholar 

  17. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, Bouter LM, de Vet HC. The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. Qual Life Res. 2010;19:539–49.

    CrossRef  Google Scholar 

  18. Deyo RA, Centor RM. Assessing the responsiveness of functional scales to clinical change: an analogy to diagnostic test performance. J Chronic Dis. 1986;39:897–906.

    CrossRef  Google Scholar 

  19. Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951;16:297–334.

    CrossRef  Google Scholar 

  20. Boyle GJ. Does item homogeneity indicate internal consistency or item redundancy in psychometric scales? Personal Individ Differ. 1991;12:291–4.

    CrossRef  Google Scholar 

  21. Beckerman H, Roebroeck ME, Lankhorst GJ, Becher JG, Bezemer PD, Verbeek AL. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res. 2001;10:571–8.

    CrossRef  Google Scholar 

  22. de Vet HC, Bouter LM, Bezemer PD, Beurskens AJ. Reproducibility and responsiveness of evaluative outcome measures. Theoretical considerations illustrated by an empirical example. Int J Technol Assess Health Care. 2001;17:479–87.

    CrossRef  Google Scholar 

  23. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    CrossRef  Google Scholar 

  24. Cohen J. Statistical power analysis for the behavioral sciences. Academic Press; 2013.

    CrossRef  Google Scholar 

  25. Anthoine E, Moret L, Regnault A, Sebille V, Hardouin JB. Sample size used to validate a scale: a review of publications on newly-developed patient reported outcomes measures. Health Qual Life Outcomes. 2014;12:176.

    CrossRef  Google Scholar 

  26. Bonett DG, Wright TA. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika. 2000;65:23–8.

    CrossRef  Google Scholar 

  27. Bonett DG. Sample size requirements for testing and estimating coefficient alpha. J Educ Behav Stat. 2002;27:335–40.

    CrossRef  Google Scholar 

  28. Bonett DG. Sample size requirements for estimating intraclass correlations with desired precision. Stat Med. 2002;21:1331–5.

    CrossRef  Google Scholar 

  29. Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10:407–15.

    CrossRef  Google Scholar 

  30. Revicki D, Hays RD, Cella D, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61:102–9.

    CrossRef  Google Scholar 

  31. Cocks K, King MT, Velikova G, de Castro G Jr, Martyn St-James M, Fayers PM, Brown JM. Evidence-based guidelines for interpreting change scores for the European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. Eur J Cancer. 2012;48:1713–21.

    CrossRef  Google Scholar 

  32. Cocks K, King MT, Velikova G, Martyn St-James M, Fayers PM, Brown JM. Evidence-based guidelines for determination of sample size and interpretation of the European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. J Clin Oncol. 2011;29:89–96.

    CrossRef  Google Scholar 

  33. Wei JT, Dunn RL, Litwin MS, Sandler HM, Sanda MG. Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology. 2000;56:899–905.

    CrossRef  Google Scholar 

  34. Anota A, Mariet AS, Maingon P, Joly F, Bosset JF, Guizard AV, Bittard H, Velten M, Mercier M. Cross-cultural adaptation and validation of the French version of the Expanded Prostate cancer Index Composite questionnaire for health-related quality of life in prostate cancer patients. Health Qual Life Outcomes. 2016;14:168.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Anota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Anota, A., Charton, E. (2022). Validating Cancer Quality of Life Assessment Tools: Psychometric Considerations. In: Kassianos, A.P. (eds) Handbook of Quality of Life in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-84702-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84702-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84701-2

  • Online ISBN: 978-3-030-84702-9

  • eBook Packages: MedicineMedicine (R0)