Skip to main content

Cooling Approaches for Solar PV Panels

Part of the Green Energy and Technology book series (GREEN)

Abstract

Owing to the low efficiency of conversion of solar energy to electrical energy, more than 80% of the incident or the striking solar energy heats the photovoltaic (PV) panel surface. This heating causes an elevated operating temperature of PV panels which is normally higher than the Standard Test Condition (STC) temperature of 25 °C. This elevated temperature of PV panel has certain damaging effects on the PV cell performance and their structures, if suitable measures are not taken to dissipate this excess heat. In a real environment, usually, this excess heat is dissipated by ambient air and natural cooling by a convective heat transfer mechanism. For this reason, the PV installations are being placed sufficiently above the ground level to provide proper airflow around the PV panel surface for their adequate cooling. This chapter presents an overview of various cooling options adopted to control the operating temperature of the solar PV panels.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Renewable capacity highlights (2019) International Renewable Energy Agency. https://www.irena.org/media/Files/IRENA/Agency/Publication/2019/Mar/RE_capacity_highlights_2019.pdf. Accessed 20 July 2019

  2. Wang Z, Li Y, Wang K, Huang Z (2017) Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis. Renew Sustain Energy Rev 76:1153–1162

    CrossRef  Google Scholar 

  3. Pandey AK, Tyagi VV, Jeyraj A, Selvaraj L, Rahim NA, Tyagi SK (2016) Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew Sustain Energy Rev 53:859–884

    Google Scholar 

  4. Mattei M, Notton G, Cristofari C, Muselli M, Poggi P (2006) Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew Energy 31:553–567

    CrossRef  Google Scholar 

  5. Abdolzadeh M, Zare T (2017) Optical and thermal modeling of a photovoltaic module and experimental evaluation of the modeling performance. Environ Prog Sustain Energy 36(1):277–293

    CrossRef  Google Scholar 

  6. Skoplaki E, Palyvos JA (2009) On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy 83:614–624

    CrossRef  Google Scholar 

  7. Gwandu BAL, Creasey DJ (1995) Humidity: a factor in the appropriate positioning of a photovoltaic power station. Renew Energy 6(3):313–316

    Google Scholar 

  8. Photovoltaics (PV) in the classroom workshop (1999) NREL Publication Code. https://www.nrel.gov Accessed 13 May 2019

  9. Khonkar H, Alyahya A, Aljuwaied M, Halawani M, Al Saferan A, Al-Khaldi F, Alhadlaq F, Wacaser BA (2014) Importance of cleaning concentrated photovoltaic arrays in a desert environment. Sol Energy 110:268–275

    Google Scholar 

  10. Mekhilef S, Saidur R, Kamalisarvestani M (2012) Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sust Energy Rev 16:2920–2925

    Google Scholar 

  11. TouatiFA A-H, Bouchech HJ (2012) Study of the effects of dust, relative humidity, and temperature on solar PV performance in Doha: comparison between monocrystalline and amorphous PVS. Int J Green Energy 10(7):680–689

    CrossRef  Google Scholar 

  12. Tiwari GN, Mishra RK, Solanki SC (2011) Photovoltaic modules and their applications: A review on thermal modeling. Appl Energy 88:2287–2304

    CrossRef  Google Scholar 

  13. Kahoul N, Houabes M, Sadok M (2014) Assessing the early degradation of photovoltaic modules performance in the Saharan region. Energy Convers Manage 82:320–326

    CrossRef  Google Scholar 

  14. Siddiqui MU, Arif AFM (2013) Electrical, thermal and structural performance of a cooled PV module: Transient analysis using a multiphysics model. Appl Energy 112:300–312

    CrossRef  Google Scholar 

  15. Ndiaye A, Charki A, Kobi A, Kébé C, Ndiaye P, Sambou V (2013) Degradations of silicon photovoltaic modules: A literature review. Sol Energy 96:140–151

    CrossRef  Google Scholar 

  16. Jones AD, Underwood CP (2001) A thermal model for photovoltaic systems. Sol Energy 70(4):349–359

    CrossRef  Google Scholar 

  17. Royne A, Dey CJ, Mills DR (2005) Cooling of photovoltaic cells under concentrated illumination: A critical review. Sol Energy Mater Sol Cells 86:451–483

    CrossRef  Google Scholar 

  18. Makki A, Ome S, Sabir H (2015) Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew Sustain Energy Rev 41:658–684

    CrossRef  Google Scholar 

  19. Tina GM, Rosa-Clot M, Rosa-Clot P, Scandura PF (2012) Optical and thermal behavior of submerged photovoltaic solar panel SP2. Energy 39:17–26

    CrossRef  Google Scholar 

  20. Wang Y, Fang Z, ZhuL HQ, Zhang Y, Zhang Z (2009) The performance of silicon solar cells operated in liquids. Appl Energy 86:1037–1042

    CrossRef  Google Scholar 

  21. Bayrak F, Oztop HF, Selimefendigil F (2019) Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Sol Energy 188:484–494

    CrossRef  Google Scholar 

  22. Cabo FG, Nizetic S, Coko D, Kragic IM, Papadopoulos A (2018) Experimental investigation of the passive cooled free-standing photovoltaic panel with fixed aluminum fins on the backside surface. J Clean Prod 176:119–129

    CrossRef  Google Scholar 

  23. Solanki CS, Sangani CS, Gunashekar D, Antony G (2008) Enhanced heat dissipation of V-trough PV modules for better performance. Solar Energy Mater Sol Cells 92:1634–1638

    CrossRef  Google Scholar 

  24. Brinkworth BJ, Cross BM, Marshall RH, Yang H (1997) Thermal regulation of photovoltaic cladding. Sol Energy 61(3):169–178

    CrossRef  Google Scholar 

  25. Maiti S, Banerjee S, Vyas K, Patel P, Ghosh PK (2011) Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Sol Energy 85:1805–1816

    CrossRef  Google Scholar 

  26. Stropnik R, Stritih U (2016) Increasing the efficiency of PV panel with the use of PCM. Renew Energy 97:671–679

    CrossRef  Google Scholar 

  27. Rajvikram M, Leoponraj S, Ramkumar S, Akshaya H, Dheeraj A (2019) Experimental investigation on the abasement of operating temperature in solar photovoltaic panel using PCM and aluminium. Sol Energy 188:327–338

    CrossRef  Google Scholar 

  28. Atkin P, Farid MM (2015) Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Sol Energy 114:217–228

    CrossRef  Google Scholar 

  29. Sheyda PV, Rahimi M, Parsamoghadam A, Masahi MM (2014) Using a wind-driven ventilator to enhance a photovoltaic cell power generation. Energy Build 73:115–119

    CrossRef  Google Scholar 

  30. Alami AH (2014) Effects of evaporative cooling on efficiency of photovoltaic modules. Energy Convers Manage 77:668–679

    CrossRef  Google Scholar 

  31. Alami AH (2016) Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells. Energy 108:195–200

    CrossRef  Google Scholar 

  32. Ebrahimi M, Rahimi M, Rahimi A (2015) An experimental study on using natural vaporization for cooling of a photovoltaic solar cell. Int Commun Heat Mass Transfer 65:22–30

    CrossRef  Google Scholar 

  33. Chandrasekar M, Suresh S, Senthilkumar T, Ganesh Karthikeyan M (2013) Passive cooling of standalone flat PV module with cotton wick structures. Energy Convers Manage 71:43–50

    Google Scholar 

  34. Chandrasekar M, Senthilkumar T (2015) Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures. Energy 90:1401–1410

    CrossRef  Google Scholar 

  35. Chandrasekar M, Senthilkumar T (2015) Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling. Heat Mass Transfer. https://doi.org/10.1007/s00231-015-1661-9

    CrossRef  Google Scholar 

  36. WuS XC (2014) Passive cooling technology for photovoltaic panels for domestic houses. Int J Low-Carbon Technol 9:118–126

    CrossRef  Google Scholar 

  37. Krauter S (2004) Increased electrical yield via water flow over the front of photovoltaic panels. Sol Energy Mater Sol Cells 82:131–137

    CrossRef  Google Scholar 

  38. Odehand S, Behnia M (2009) Improving Photovoltaic Module Efficiency Using Water Cooling. Heat Transfer Eng 30(6):499–505

    CrossRef  Google Scholar 

  39. Abdolzadeh M, Ameri M (2009) Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renew Energy 34:91–96

    CrossRef  Google Scholar 

  40. Schiro F, Benato A, Stoppato A, Destro N (2017) Improving photovoltaics efficiency by water cooling : Modelling and experimental approach. Energy 137:798–810

    CrossRef  Google Scholar 

  41. Saxena S, Deshmukh S, Nirali S, Wani (2018) Laboratory based experimental investigation of photovoltaic (PV) thermo-control with water and its proposed real-time implementation. Renew Energy 115:128–138

    Google Scholar 

  42. Royne A, Dey CJ (2007) Design of a jet impingement cooling device for densely packed PV cells under high concentration. Sol Energy 81:1014–1024

    CrossRef  Google Scholar 

  43. Teo HG, Lee PS, Hawlader MNA (2012) An active cooling system for photovoltaic modules. Appl Energy 90:309–315

    CrossRef  Google Scholar 

  44. Kumar R, Rosen MA (2011) A critical review of photovoltaic–thermal solar collectors for air heating. Appl Energy 88:3603–3614

    CrossRef  Google Scholar 

  45. Mellor A, Alvarez DA, Guarracino I, Ramos A, Lacasta AR, Llin LF, Murrell AJ, Paul DJ, Chemisana D, Markides CN, Ekins-Daukes NJ (2018) Roadmap for the next-generation of hybrid photovoltaic-thermal solar energy collectors. Sol Energy 174:386–398

    CrossRef  Google Scholar 

  46. Ceylan I, Gürelb AE, Demircan H, Aksu B (2014) Cooling of a photovoltaic module with temperature controlled solar collector. Energy Build 72:96–101

    CrossRef  Google Scholar 

  47. Bahaidarah H, Subhan A, Gandhidasan P, Rehman S (2013) Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions.Energy 59:445–453

    Google Scholar 

  48. Yang DJ, Yuan ZF, Lee PH, Yin HM (2012) Simulation and experimental validation of heat transfer in a novel hybrid solar panel. Int J Heat Mass Transf 55:1076–1082

    CrossRef  Google Scholar 

  49. Du B, Hu E, Kolhe M (2012) Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renew Sustain Energy Rev 16:6732–6736

    CrossRef  Google Scholar 

  50. Maiti S, Vyas K, Ghosh PK (2010) Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling. Sol Energy 84:1439–1444

    CrossRef  Google Scholar 

  51. Duck BC, Fella CJ, Anderson KF, Sacchetta C, Du Y, Zhu Y (2018) Determining the value of cooling in photovoltaics for enhanced energy yield. Sol Energy 159:337–345

    CrossRef  Google Scholar 

  52. Elbrekia AM, Alghoulc MA, Sopiana K, Husseine T (2017) Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution. Renew Sustain Energy Rev 69:961–1017

    CrossRef  Google Scholar 

  53. Hasanuzzaman M, Malek ABMA, Islam MM, Pandey AK, Rahim NA (2016) Global advancement of cooling technologies for PV systems: A review. Sol Energy 137:25–45

    CrossRef  Google Scholar 

  54. Abdallah SR, Scott HS, Benedi J (2019) Experimental study for thermal regulation of photovoltaic panels using saturated zeolite with water. Sol Energy 188:464–474

    CrossRef  Google Scholar 

  55. Oliveira MCC, Cardoso ASAD, Viana MM, Lins VFC (2018) The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: a review. Renew Sustain Energy Rev 81:2299–2317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandrasekar, M., Senthilkumar, T., Gopal, P. (2022). Cooling Approaches for Solar PV Panels. In: Al-Ahmed, A., Inamuddin, Al-Sulaiman, F.A., Khan, F. (eds) The Effects of Dust and Heat on Photovoltaic Modules: Impacts and Solutions. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-84635-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84635-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84634-3

  • Online ISBN: 978-3-030-84635-0

  • eBook Packages: EnergyEnergy (R0)