Skip to main content

Fission models revisited: reactions and dynamics

  • Chapter
  • First Online:
An Introduction to Nuclear Fission

Part of the book series: Graduate Texts in Physics ((GTP))

  • 1082 Accesses

Abstract

Chapter 7 is an advanced discussion of models of fission reactions and dynamics. The chapter starts with a general discussion of scattering theory, resonances, and widths to arrive at the formal definition of a cross section and to set the stage for Hauser-Feshbach theory, the framework widely used for the calculation of fission (and other) cross sections. Hauser-Feshbach theory is treated in detail with an extensive discussion of transition state theory and its application to fission. The discussion of the Hauser-Feshbach formalism highlights the importance of two crucial ingredients in the calculations: level densities, already discussed in Chap. 6, and transition strengths introduced in this chapter. Quasifission is discussed along with direct-reaction-induced fission. A brief survey of advanced topics gives a discussion of semi-classical and quantum mechanical methods used in the description of fission dynamics and which represent the state of the art in current research to describe the evolution of the fissioning nucleus to scission and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the beam and detected particles do not have to be the same, unless the reaction is elastic.

  2. 2.

    With the caveat that energy, angular momentum, and parity must be conserved throughout the process.

  3. 3.

    We ignore some of the details for the sake of simplicity, namely, parity and the angular momenta of the individual channels α, β, and γ. A more complete version of Eq. (7.23) would include cumbersome summations over those quantum numbers as well [19].

  4. 4.

    In realistic calculations, the situation is usually more complicated with M x and M y themselves functions of x and y and the presence of a cross term in xy with its own inertial mass.

  5. 5.

    For alternate values of the transition state energies and moments of inertia, see, for example, the user’s manual for the TALYS reaction code (available at https://tendl.web.psi.ch/tendl_2019/talys.html).

  6. 6.

    It is worth noting that tritium beams are difficult to come by nowadays, but many \(\left (t,pf\right )\) reaction studies were performed in the 1960s [21].

References

  1. B.B. Back, Phys. Rev. C 31, 2104 (1985)

    Article  ADS  Google Scholar 

  2. B.B. Back, et al., Phys. Rev. C 53, 1734 (1996)

    Article  ADS  Google Scholar 

  3. B. Back, Rev. Mod. Phys. 86, 317 (2014)

    Article  ADS  Google Scholar 

  4. X. Bao, H. Zhang, G. Royer, J. Li, Nucl. Phys. A 906, 1 (2013)

    Article  ADS  Google Scholar 

  5. J. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991)

    Article  ADS  Google Scholar 

  6. R. Bernard, H. Goutte, D. Gogny, W. Younes, Phys. Rev. C 84, 044308 (2011)

    Article  ADS  Google Scholar 

  7. G.F. Bertsch, W. Younes, L.M. Robledo, Phys. Rev. C 100, 024607 (2019)

    Article  ADS  Google Scholar 

  8. E.R. Bittner, Quantum Mechanics: Lecture Notes for Chemistry 6312 Quantum Chemistry. University of Houston, Department of Chemistry (2003)

    Google Scholar 

  9. S. Bjørnholm, J.E. Lynn, Rev. Mod. Phys. 52, 725 (1980)

    Article  ADS  Google Scholar 

  10. J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Dover Publications, Mineola, 1991)

    MATH  Google Scholar 

  11. A. Bohr, Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, vol. 2 (United Nations, New York, 1956), pp. 151–154

    Google Scholar 

  12. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    Article  ADS  Google Scholar 

  13. P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen, J. Meyer, Nucl. Phys. A 510, 466 (1990)

    Article  ADS  Google Scholar 

  14. D.M. Brink, Lecture Notes in Physics, vol. 581 (Springer, Berlin, 2001)

    Google Scholar 

  15. A. Bulgac, Ann. Rev. Nuclear Particle Sci. 63, 97 (2013)

    Article  ADS  Google Scholar 

  16. A. Bulgac, P. Magierski, K.J. Roche, I. Stetcu, Phys. Rev. Lett. 116, 122504 (2016)

    Article  ADS  Google Scholar 

  17. M. Büttiker, Phys. Rev. B 41, 7906 (1990)

    Article  ADS  Google Scholar 

  18. E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Modern Phys. 77, 427 (2005)

    Article  ADS  Google Scholar 

  19. F.S. Dietrich, Technical Report UCRL-TR-201718 (LLNL, 2004)

    Google Scholar 

  20. D.O. Eremenko, V.A. Drozdov, O.V. Fotina, S.Y. Platonov, O.A. Yuminov, Phys. Rev. C 94, 014602 (2016)

    Article  ADS  Google Scholar 

  21. J.E. Escher, J.T. Burke, F.S. Dietrich, n.d. Scielzo, I.J. Thompson, W. Younes, Rev. Mod. Phys. 84, 353 (2012)

    Google Scholar 

  22. H. Eyring, J. Chem. Phys. 3, 107 (1935)

    Article  ADS  Google Scholar 

  23. P. Fröbrich, I. Gontchar, Phys. Rep. 292, 131 (1998)

    Article  ADS  Google Scholar 

  24. N. Fröman, Ö. Dammert, Nucl. Phys. A147, 627 (1970)

    Article  ADS  Google Scholar 

  25. R. Gilmore, Elementary Quantum Mechanics in One Dimension (Johns Hopkins University Press, Baltimore, 2004)

    MATH  Google Scholar 

  26. H. Goutte, J.F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71, 024316 (2005)

    Article  ADS  Google Scholar 

  27. W. Greiner, J.A. Maruhn, Nuclear Models (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  28. J.J. Griffin, Proceedings of the Symposium on Physics and Chemistry of Fission, vol. I (1965)

    Google Scholar 

  29. J.J. Griffin, J.A. Wheeler, Phys. Rev. 108, 311 (1957)

    Article  ADS  Google Scholar 

  30. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  31. D.M. Heim, W.P. Schleich, P.M. Alsing, J.P. Dahl, S. Varro, Phys. Lett. A 377, 1822 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. B. Heusch, C. Volant, H. Freiesleben, R.P. Chestnut, K.D. Hildenbrand, F. Puehlhofer, W.F.W. Schneider, B. Kohlmeyer, W. Pfeffer, Zeit. Phys. A 288, 391 (1978)

    Article  ADS  Google Scholar 

  33. D.L. Hill, J.A. Wheeler, Phys. Rev. C 89, 1102 (1953)

    Article  ADS  Google Scholar 

  34. D.J. Hinde, M. Dasgupta, A. Mukherjee, Phys. Rev. Lett. 89, 282701 (2002)

    Article  ADS  Google Scholar 

  35. D. Hinde, M. Dasgupta, D. Jeung, G. Mohanto, E. Prasad, C. Simenel, E. Williams, I. Carter, K. Cook, S. Kalkal, D. Rafferty, E. Simpson, H. David, C. Düllmann, J. Khuyagbaatar, in EPJ Web of Conferences, ed. by E. Simpson, C. Simenel, K. Cook, I. Carter, 163, 00023 (2017)

    Google Scholar 

  36. M.G. Itkis, et al., Nucl. Phys. A787, 150 (2007)

    Article  ADS  Google Scholar 

  37. Y.M. Itkis, A. Karpov, G.N. Knyazheva, E.M. Kozulin, N.I. Kozulina, K.V. Novikov, K.B. Gikal, I.N. Diatlov, I.V. Pchelintsev, I.V. Vorobiov, A.N. Pan, P.P. Singh, Bull. Russ. Acad. Sci. Phys. 84, 938 (2020)

    Article  Google Scholar 

  38. E.C. Kemble, Phys. Rev. 48, 549 (1935)

    Article  ADS  Google Scholar 

  39. G.F. Knoll, Radiation Detection and Measurement (Wiley, Hoboken, 2010)

    Google Scholar 

  40. E.M. Kozulin, G.N. Knyazheva, T.K. Ghosh, A. Sen, I.M. Itkis, M.G. Itkis, K.V. Novikov, I.N. Diatlov, I.V. Pchelintsev, C. Bhattacharya, S. Bhattacharya, K. Banerjee, E.O. Saveleva, I.V. Vorobiev, Phys. Rev. C 99, 014616 (2019)

    Article  ADS  Google Scholar 

  41. R.H. Landau, Quantum Mechanics II: A Second Course in Quantum Theory (Wiley, Hoboken, 1990)

    MATH  Google Scholar 

  42. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How-to Approach (Springer, Berlin, 1992)

    Google Scholar 

  43. W. Loveland, J. Phys. Conf. Ser. 420, 012004 (2013)

    Article  Google Scholar 

  44. J.E. Lynn, Fission Cross Section Theory. Lecture at the FIESTA School, LANL, LANL (2014)

    Google Scholar 

  45. J.E. Lynn, B.B. Back, J. Phys. A 7, 395 (1974)

    Article  ADS  Google Scholar 

  46. P. Marmier, Physics of Nuclei and Particles (Academic, New York, 1969)

    Google Scholar 

  47. K. Mazurek, C. Schmitt, P.N. Nadtochy, A.V. Cheredov, Phys. Rev. C 94, 064602 (2016)

    Article  ADS  Google Scholar 

  48. P. Moldauer, Phys. Rev. 123, 968 (1961)

    Article  ADS  Google Scholar 

  49. P. Möller, A.J. Sierk, A. Iwamoto, Phys. Rev. Lett. 92, 072501 (2004)

    Article  ADS  Google Scholar 

  50. H. Müther, K. Goeke, K. Allaart, A. Faessler, Phys. Rev. C 15, 1467 (1977)

    Article  ADS  Google Scholar 

  51. J.W. Negele, S.E. Koonin, P. Möller, J.R. Nix, A.J. Sierk, Phys. Rev. C 17, 1098 (1978)

    Article  ADS  Google Scholar 

  52. Y.T. Oganessian, et al., Phys. Rev. C 69, 054607 (2004)

    Article  ADS  Google Scholar 

  53. Y.T. Oganessian, et al., Phys. Rev. C 74, 044602 (2006)

    Article  ADS  Google Scholar 

  54. Y.T. Oganessian, A. Sobiczewski, G.M. Ter-Akopian, Phys. Scr. 92, 023003 (2017)

    Article  ADS  Google Scholar 

  55. J. Randrup, P. Möller, A.J. Sierk, Phys. Rev. C 84, 034613 (2011)

    Article  ADS  Google Scholar 

  56. D. Regnier, N. Dubray, N. Schunck, M. Verrière, Phys. Rev. C 93, 054611 (2016)

    Article  ADS  Google Scholar 

  57. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)

    Book  Google Scholar 

  58. G.R. Satchler, Introduction to Nuclear Reactions (Macmillan, Basingstoke, 1990)

    Book  Google Scholar 

  59. G. Scamps, C. Simenel, D. Lacroix, Phys. Rev. C 92, 011602 (2015)

    Article  ADS  Google Scholar 

  60. A.J. Sierk, Phys. Rev. C 96, 034603 (2017)

    Article  ADS  Google Scholar 

  61. C. Simenel, A.S. Umar, Phys. Rev. C 89, 031601 (2014)

    Article  ADS  Google Scholar 

  62. I. Stetcu, A. Bulgac, P. Magierski, K.J. Roche, Phys. Rev. C 84, 051309 (2011)

    Article  ADS  Google Scholar 

  63. W.J. Swiatecki, Phys. Scr. 24, 113 (1981)

    Article  ADS  Google Scholar 

  64. B.M.A. Swinton-Bland, M.A. Stoyer, A.C. Berriman, D.J. Hinde, C. Simenel, J. Buete, T. Tanaka, K. Banerjee, L.T. Bezzina, I.P. Carter, K.J. Cook, M. Dasgupta, D.Y. Jeung, C. Sengupta, E.C. Simpson, K. Vo-Phuoc, Phys. Rev. C 102, 054611 (2020)

    Article  ADS  Google Scholar 

  65. J. Tōke, R. Bock, G. Dai, A. Gobbi, S. Gralla, K. Hildenbrand, J. Kuzminski, W. Müller, A. Olmi, H. Stelzer, S.B.B.B. Back, Nucl. Phys. A440, 327 (1985)

    Article  ADS  Google Scholar 

  66. E. Vardaci, et al., Phys. Rev. C 92, 034610 (2015)

    Article  ADS  Google Scholar 

  67. M. Verrière, N. Dubray, N. Schunck, D. Regnier, P. Dossantos-Uzarralde, EPJ Web Conferences, 146, 04034 (2017)

    Article  Google Scholar 

  68. D.E. Ward, B.G. Carlsson, T. Døssing, P. Möller, J. Randrup, S. Åberg, Phys. Rev. C 95, 024618 (2017)

    Article  ADS  Google Scholar 

  69. E. Wigner, Trans. Faraday Soc. 34, 29 (1938)

    Article  Google Scholar 

  70. W. Younes, A Microscopic Theory of Fission Dynamics Based on the Generator Coordinate Method (Springer, Cham, 2019)

    Book  Google Scholar 

  71. W. Younes, H.C. Britt, Phys. Rev. C 67, 024610 (2003)

    Article  ADS  Google Scholar 

  72. P.G. Young, E.D. Arthur, M.B. Chadwick, Technical Report LA-12343-MS (LANL, 1992)

    Google Scholar 

  73. V. Zagrebaev, W. Greiner, J. Phys. G Nuclear Particle Phys. 31, 825 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Younes, W., Loveland, W.D. (2021). Fission models revisited: reactions and dynamics. In: An Introduction to Nuclear Fission. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-84592-6_7

Download citation

Publish with us

Policies and ethics