Skip to main content

Image-Guided Percutaneous Biopsies

  • Chapter
  • First Online:
Modern Breast Cancer Imaging
  • 1012 Accesses

Abstract

Imaging-guided percutaneous breast biopsy is of utmost importance in the evaluation of suspicious breast lesions and has become the standard of care prior to surgical management. Diagnosis can be achieved with minimal patient trauma on an outpatient and cost-effective basis, avoiding open surgery for benign results and providing critical information for malignant results, allowing preoperative staging, acquisition of histologic biomarkers, and planning for optimal surgical resection.

Over the last 40 years, percutaneous breast biopsy has been gradually evolving side by side with breast imaging modalities. Improvements such as larger-core needles and vacuum-assisted sampling systems have led to more efficient sampling, while the development of tomosynthesis-guided biopsy as well as biopsy kits compatible with MRI has made percutaneous biopsy available to almost every suspicious lesion found on imaging. In this chapter, we review state-of-the-art percutaneous breast biopsy, focusing on the main indications, technique, and limitations of ultrasound, stereotactic, tomosynthesis, and MRI-guided biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker SH, Lovin JD, Jobe WE, et al. Stereotactic breast biopsy with a biopsy gun. Radiology. 1990;176(3):741–7. https://doi.org/10.1148/radiology.176.3.2167501.

    Article  CAS  PubMed  Google Scholar 

  2. Parker SH, Lovin JD, Jobe WE, Burke BJ, Hopper KD, Yakes WF. Nonpalpable breast lesions: stereotactic automated large-core biopsies. Radiology. 1991;180(2):403–7. https://doi.org/10.1148/radiology.180.2.1648757.

    Article  CAS  PubMed  Google Scholar 

  3. Parker SH, Jobe WE, Dennis MA, et al. US-guided automated large-core breast biopsy. Radiology. 1993;187(2):507–11. https://doi.org/10.1148/radiology.187.2.8475299.

    Article  CAS  PubMed  Google Scholar 

  4. Liberman L. Percutaneous imaging-guided core breast biopsy. Am J Roentgenol. 2000;174(5):1191–9. https://doi.org/10.2214/ajr.174.5.1741191.

    Article  CAS  Google Scholar 

  5. Wallis M, Tarvidon A, Helbich T, Schreer I. Guidelines from the European Society of Breast Imaging for diagnostic interventional breast procedures. Eur Radiol. 2007;17(2):581–8. https://doi.org/10.1007/s00330-006-0408-x.

    Article  PubMed  Google Scholar 

  6. Chetlen AL, Kasales C, Mack J, Schetter S, Zhu J. Hematoma formation during breast core needle biopsy in women taking antithrombotic therapy. Am J Roentgenol. 2013;201(1):215–22. https://doi.org/10.2214/AJR.12.9930.

    Article  Google Scholar 

  7. Portnow LH, Thornton CM, Milch HS, Mango VL, Morris EA, Saphier NB. Biopsy marker standardization: what’s in a name? Am J Roentgenol. 2019;212(6):1400–5. https://doi.org/10.2214/AJR.18.20577.

    Article  Google Scholar 

  8. Durand MA, Haas BM, Yao X, et al. Early clinical experience with digital breast tomosynthesis for screening mammography. Radiology. 2015;274(1):85–92. https://doi.org/10.1148/radiol.14131319.

    Article  PubMed  Google Scholar 

  9. Sharma B, Jurgensen-Rauch A, Pace E, et al. Breast implant–associated anaplastic large cell lymphoma: review and multiparametric imaging paradigms. Radiographics. 2020;40(3):609–28. https://doi.org/10.1148/rg.2020190198.

    Article  PubMed  Google Scholar 

  10. Wang M, He X, Chang Y, Sun G, Thabane L. A sensitivity and specificity comparison of fine needle aspiration cytology and core needle biopsy in evaluation of suspicious breast lesions: a systematic review and meta-analysis. Breast Edinb Scotl. 2017;31:157–66. https://doi.org/10.1016/j.breast.2016.11.009.

    Article  Google Scholar 

  11. Yu Y-H, Wei W, Liu J-L. Diagnostic value of fine-needle aspiration biopsy for breast mass: a systematic review and meta-analysis. BMC Cancer. 2012;12(1):41. https://doi.org/10.1186/1471-2407-12-41.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Berg WA, Krebs TL, Campassi C, Magder LS, Sun CC. Evaluation of 14- and 11-gauge directional, vacuum-assisted biopsy probes and 14-gauge biopsy guns in a breast parenchymal model. Radiology. 1997;205(1):203–8. https://doi.org/10.1148/radiology.205.1.9314986.

    Article  CAS  PubMed  Google Scholar 

  13. Nakano S, Imawari Y, Mibu A, Otsuka M, Oinuma T. Differentiating vacuum-assisted breast biopsy from core needle biopsy: is it necessary? Br J Radiol. 2018;91(1092) https://doi.org/10.1259/bjr.20180250.

  14. Wen X, Cheng W. Nonmalignant breast papillary lesions at core-needle biopsy: a meta-analysis of underestimation and influencing factors. Ann Surg Oncol. 2013;20(1):94–101. https://doi.org/10.1245/s10434-012-2590-1.

    Article  PubMed  Google Scholar 

  15. Rageth CJ, O’Flynn EA, Comstock C, et al. First international consensus conference on lesions of uncertain malignant potential in the breast (B3 lesions). Breast Cancer Res Treat. 2016;159(2):203–13. https://doi.org/10.1007/s10549-016-3935-4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krishnamurthy S, Bevers T, Kuerer HM, Smith B, Yang WT. Paradigm shifts in breast care delivery: impact of imaging in a multidisciplinary environment. AJR Am J Roentgenol. 2017;208(2):248–55. https://doi.org/10.2214/AJR.16.17130.

    Article  PubMed  Google Scholar 

  17. Kettritz U, Rotter K, Schreer I, et al. Stereotactic vacuum-assisted breast biopsy in 2874 patients. Cancer. 2004;100(2):245–51. https://doi.org/10.1002/cncr.11887.

    Article  PubMed  Google Scholar 

  18. Philpotts LE, Shaheen NA, Carter D, Lange RC, Lee CH. Comparison of rebiopsy rates after stereotactic core needle biopsy of the breast with 11-gauge vacuum suction probe versus 14-gauge needle and automatic gun. Am J Roentgenol. 1999;172(3):683–7. https://doi.org/10.2214/ajr.172.3.10063860.

    Article  CAS  Google Scholar 

  19. Huang XC, Hu XH, Wang XR, et al. A comparison of diagnostic performance of vacuum-assisted biopsy and core needle biopsy for breast microcalcification: a systematic review and meta-analysis. Ir J Med Sci 1971. 2018;187(4):999–1008. https://doi.org/10.1007/s11845-018-1781-6.

    Article  Google Scholar 

  20. den Dekker BM, van Diest PJ, de Waard SN, Verkooijen HM, Pijnappel RM. Stereotactic 9-gauge vacuum-assisted breast biopsy, how many specimens are needed? Eur J Radiol. 2019;120:108665. https://doi.org/10.1016/j.ejrad.2019.108665.

    Article  Google Scholar 

  21. Stereotactic 11-gauge Vacuum-Assisted Breast Biopsy: Influence of Number of Specimens on Diagnostic Accuracy - PubMed. Accessed June 21, 2020. https://pubmed.ncbi.nlm.nih.gov/15273332/

  22. Durand MA, Wang S, Hooley RJ, Raghu M, Philpotts LE. Tomosynthesis-detected architectural distortion: management algorithm with radiologic-pathologic correlation. Radiographics. 2016;36(2):311–21. https://doi.org/10.1148/rg.2016150093.

    Article  PubMed  Google Scholar 

  23. Conant EF, Barlow WE, Herschorn SD, et al. Association of digital breast tomosynthesis vs digital mammography with cancer detection and recall rates by age and breast density. JAMA Oncol. 2019;5(5):635–42. https://doi.org/10.1001/jamaoncol.2018.7078.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Skaane P, Bandos AI, Gullien R, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267(1):47–56. https://doi.org/10.1148/radiol.12121373.

    Article  PubMed  Google Scholar 

  25. Health C for D and R. MQSA National Statistics. FDA. Published online January 6, 2020. Accessed June 13, 2020. https://www.fda.gov/radiation-emitting-products/mqsa-insights/mqsa-national-statistics

  26. Alshafeiy TI, Nguyen JV, Rochman CM, Nicholson BT, Patrie JT, Harvey JA. Outcome of architectural distortion detected only at breast tomosynthesis versus 2D mammography. Radiology. 2018;288(1):38–46. https://doi.org/10.1148/radiol.2018171159.

    Article  PubMed  Google Scholar 

  27. Partyka L, Lourenco AP, Mainiero MB. Detection of mammographically occult architectural distortion on digital breast tomosynthesis screening: initial clinical experience. Am J Roentgenol. 2014;203(1):216–22. https://doi.org/10.2214/AJR.13.11047.

    Article  Google Scholar 

  28. Patel BK, Covington M, Pizzitola VJ, et al. Initial experience of tomosynthesis-guided vacuum-assisted biopsies of tomosynthesis-detected (2D mammography and ultrasound occult) architectural distortions. Am J Roentgenol. 2018;210(6):1395–400. https://doi.org/10.2214/AJR.17.18802.

    Article  Google Scholar 

  29. Bahl M, Maunglay M, D’Alessandro HA, Lehman CD. Comparison of upright digital breast tomosynthesis–guided versus prone stereotactic vacuum-assisted breast biopsy. Radiology. 2018;290(2):298–304. https://doi.org/10.1148/radiol.2018181788.

    Article  PubMed  Google Scholar 

  30. Schrading S, Distelmaier M, Dirrichs T, et al. Digital breast tomosynthesis–guided vacuum-assisted breast biopsy: initial experiences and comparison with prone stereotactic vacuum-assisted biopsy. Radiology. 2015;274(3):654–62. https://doi.org/10.1148/radiol.14141397.

    Article  PubMed  Google Scholar 

  31. Ariaratnam NS, Little ST, Whitley MA, Ferguson K. Digital breast Tomosynthesis vacuum assisted biopsy for Tomosynthesis-detected Sonographically occult lesions. Clin Imaging. 2018;47:4–8. https://doi.org/10.1016/j.clinimag.2017.08.002.

    Article  PubMed  Google Scholar 

  32. Chesebro AL, Chikarmane SA, Ritner JA, Birdwell RL, Giess CS. Troubleshooting to overcome technical challenges in image-guided breast biopsy. Radiographics. 2017;37(3):705–18. https://doi.org/10.1148/rg.2017160117.

    Article  PubMed  Google Scholar 

  33. Soo MS, Walsh R, Patton J. Prone table stereotactic breast biopsy: facilitating biopsy of posterior lesions using the arm-through-the-hole technique. Am J Roentgenol. 1998;171(3):615–7. https://doi.org/10.2214/ajr.171.3.9725284.

    Article  CAS  Google Scholar 

  34. Zhang Y, Ren H. Meta-analysis of diagnostic accuracy of magnetic resonance imaging and mammography for breast cancer. J Cancer Res Ther. 2017;13(5):862–8. https://doi.org/10.4103/jcrt.JCRT_678_17.

    Article  PubMed  Google Scholar 

  35. Peters NHGM, Borel Rinkes IHM, Zuithoff NPA, Mali WPTM, Moons KGM, Peeters PHM. Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology. 2008;246(1):116–24. https://doi.org/10.1148/radiol.2461061298.

    Article  PubMed  Google Scholar 

  36. Park VY, Kim MJ, Kim E-K, Moon HJ. Second-look US: how to find breast lesions with a suspicious MR imaging appearance. Radiographics. 2013;33(5):1361–75. https://doi.org/10.1148/rg.335125109.

    Article  PubMed  Google Scholar 

  37. Nakano S, Yoshida M, Fujii K, et al. Fusion of MRI and sonography image for breast cancer evaluation using real-time virtual sonography with magnetic navigation: first experience. Jpn J Clin Oncol. 2009;39(9):552–9. https://doi.org/10.1093/jjco/hyp087.

    Article  PubMed  Google Scholar 

  38. Mazzei MA, Di Giacomo L, Fausto A, Gentili F, Mazzei FG, Volterrani L. Efficacy of second-look ultrasound with MR coregistration for evaluating additional enhancing lesions of the breast: review of the literature. Biomed Res Int. 2018;2018 https://doi.org/10.1155/2018/3896946.

  39. Nakano S, Kousaka J, Fujii K, et al. Impact of real-time virtual sonography, a coordinated sonography and MRI system that uses an image fusion technique, on the sonographic evaluation of MRI-detected lesions of the breast in second-look sonography. Breast Cancer Res Treat. 2012;134(3):1179–88. https://doi.org/10.1007/s10549-012-2163-9.

    Article  PubMed  Google Scholar 

  40. Nakano S, Yoshida M, Fujii K, et al. Real-time virtual sonography, a coordinated sonography and MRI system that uses magnetic navigation, improves the sonographic identification of enhancing lesions on breast MRI. Ultrasound Med Biol. 2012;38(1):42–9. https://doi.org/10.1016/j.ultrasmedbio.2011.10.005.

    Article  PubMed  Google Scholar 

  41. Park AY, Seo BK, Han H, et al. Clinical value of real-time ultrasonography-MRI fusion imaging for second-look examination in preoperative breast cancer patients: additional lesion detection and treatment planning. Clin Breast Cancer. 2018;18(4):261–9. https://doi.org/10.1016/j.clbc.2017.07.007.

    Article  PubMed  Google Scholar 

  42. Spick C, Baltzer PAT. Diagnostic utility of second-look US for breast lesions identified at MR imaging: systematic review and meta-analysis. Radiology. 2014;273(2):401–9. https://doi.org/10.1148/radiol.14140474.

    Article  PubMed  Google Scholar 

  43. Clauser P, Carbonaro LA, Pancot M, et al. Additional findings at preoperative breast MRI: the value of second-look digital breast tomosynthesis. Eur Radiol. 2015;25(10):2830–9. https://doi.org/10.1007/s00330-015-3720-5.

    Article  PubMed  Google Scholar 

  44. Parikh J, Tickman R. Image-guided tissue sampling: where radiology meets pathology. Breast J. 2005;11(6):403–9. https://doi.org/10.1111/j.1075-122X.2005.00130.x.

    Article  PubMed  Google Scholar 

  45. Shin S, Schneider HB, Cole FJ, Laronga C. Follow-up recommendations for benign breast biopsies. Breast J. 2006;12(5):413–7. https://doi.org/10.1111/j.1075-122X.2006.00302.x.

    Article  PubMed  Google Scholar 

  46. Parker SH, Burbank F, Jackman RJ, et al. Percutaneous large-core breast biopsy: a multi-institutional study. Radiology. 1994;193(2):359–64. https://doi.org/10.1148/radiology.193.2.7972743.

    Article  CAS  PubMed  Google Scholar 

  47. Bassett LW, Mahoney MC, Apple SK. Interventional breast imaging: current procedures and assessing for concordance with pathology. Radiol Clin N Am. 2007;45(5):881–94. https://doi.org/10.1016/j.rcl.2007.06.010.

    Article  PubMed  Google Scholar 

  48. Wendie A. Berg JL. Diagnostic imaging: breast. 3rd ed; 2019. Accessed September 21, 2020. https://www.elsevier.com/books/diagnostic-imaging-breast/berg/978-0-323-54812-0

  49. Johnson JM, Johnson AK, O’Meara ES, et al. Breast cancer detection with short-interval follow-up compared with return to annual screening in patients with benign stereotactic or US-guided breast biopsy results. Radiology. 2015;275(1):54–60. https://doi.org/10.1148/radiol.14140036.

    Article  PubMed  Google Scholar 

  50. Moon HJ, Jung I, Youk JH, Kim MJ, Kim E-K. Short-term follow-up in 6 months is unnecessary for asymptomatic breast lesions with benign concordant results obtained at ultrasonography-guided 14-gauge core needle biopsy. Am J Surg. 2016;211(1):152–8. https://doi.org/10.1016/j.amjsurg.2015.03.036.

    Article  PubMed  Google Scholar 

  51. Monticciolo DL, Hajdik RL, Hicks MG, et al. Six-month short-interval imaging follow-up for benign concordant core needle biopsy of the breast: outcomes in 1444 cases with long-term follow-up. Am J Roentgenol. 2016;207(4):912–7. https://doi.org/10.2214/AJR.15.15853.

    Article  Google Scholar 

  52. Hayward JH, Ray KM, Wisner DJ, Joe BN. Follow-up outcomes after benign concordant MRI-guided breast biopsy. Clin Imaging. 2016;40(5):1034–9. https://doi.org/10.1016/j.clinimag.2016.06.005.

    Article  PubMed  Google Scholar 

  53. Kohr JR, Eby PR, Allison KH, et al. Risk of upgrade of atypical ductal hyperplasia after stereotactic breast biopsy: effects of number of foci and complete removal of calcifications. Radiology. 2010;255(3):723–30. https://doi.org/10.1148/radiol.09091406.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Chiarini Zanetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zanetta, V.C. (2022). Image-Guided Percutaneous Biopsies. In: Kim Hsieh, S.J., Morris, E.A. (eds) Modern Breast Cancer Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-84546-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84546-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84545-2

  • Online ISBN: 978-3-030-84546-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics