Skip to main content

ROS2-Based Distributed System Implementation for Logging Indoor Human Activities

  • 919 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12836)


This research implements a system that detects and records various human activities in indoor scenes. For example, it detects who brings in or takes out an object and the handled object’s image with the incident timestamp. It’s constructed over ROS2, a widely used distributed communication framework for robotic implementation based on micro-services architecture, so that it can separate each subprocess of detection and improve the maintainability of each module. This paper reports the constructed system with visual human and pose detection, object detection, and recognition of object handling activities. Since the system was able to separate hardware not only service process, it was able to employ computationally heavy machine learning models simultaneously on multiple PCs with GPU.


  • Interactive human-space design and intelligence
  • Human-robot interaction
  • ROS2

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-84522-3_70
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-84522-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.


  1. IntelRealSense librealsense2: Intel® RealSense™ SDK. Accessed 01 Mar 2021

  2. Intel® RealSense™ technology. Accessed 01 Mar 2021

  3. OpenCV-Python PyPI. Accessed 01 Mar 2021

  4. OpenPose ROS2. Accessed 01 Mar 2021

  5. ROS 2 overview. Accessed 01 Mar 2021

  6. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT: real-time instance segmentation. In: ICCV International Conference on Computer Vision, pp. 9157–9166 (2019)

    Google Scholar 

  7. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: OpenPose: real-time multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)

    CrossRef  Google Scholar 

  8. Maki, K., Katayama, N., Shimada, N., Shirai, Y.: Image-based automatic detection of indoor scene events and interactive inquiry. In: Proceedings of 19th International Conference on Pattern Recognition ICPR 2008, pp. 1–4 (2008)

    Google Scholar 

  9. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, Japan, vol. 3, p. 5 (2009)

    Google Scholar 

  10. Thönes, J.: Microservices. IEEE Softw. 32(1), 116 (2015)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nobutaka Shimada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yoshida, K., Matsuo, T., Shimada, N. (2021). ROS2-Based Distributed System Implementation for Logging Indoor Human Activities. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Bevilacqua, V. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12836. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84521-6

  • Online ISBN: 978-3-030-84522-3

  • eBook Packages: Computer ScienceComputer Science (R0)