Skip to main content

Non-tactile Thumb Tip Measurement System for Encouraging Rehabilitation After Surgery

  • 863 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12836)

Abstract

The thumb is the only finger that has a high degree of freedom of articulation and can face the other four fingers, and functional training is significant after injury surgery. We propose a system to measure and visualize the range of motion of the thumb during rehabilitation in a non-contact manner using a depth sensor and a deep neural model.

Keywords

  • Finger tip measurement
  • Rehabilitation
  • Non-tactile

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-84522-3_68
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-84522-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

References

  1. Japan Physical Therapists Association Call for Public Comment on the Society’s Version of MMT and the Society’s Version of ROM Assessment Guidelines Document 3: Joint Range of Motion Measurements (this volume). http://www.japanpt.or.jp/upload/jspt/obj/files/publiccomment/3_rom_20140612.pdf. 28 Jan 2021

  2. Ishida, K.: Guidelines for assessing range of motion of joints in the Japanese Physical Therapist Association version. Phys. Ther. 42(8), 763–764 (2015)

    Google Scholar 

  3. Kaneda, et al.: A new method for measuring range of motion using a non-contact 3D scanner. J. Jpn. Soc. Phys. Ther. 36(4), 481–487 (2017)

    Google Scholar 

  4. Miyake, Y., Matsuo, T., Shimada, N.: Measurement and visualization of range of motion of thumb tip for rehabilitation. In: Proceedings of the Robotics and Mechatronics Symposium 2020, 2P1-E04 (2020). (in Japanese)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Markus, B., et al.: LOF: identifying density-based local outliers0 In: SIGMOD 2000: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  7. Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. Comput. Graph. 30(5), 854–879 (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Matsuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Aoki, E., Matsuo, T., Shimada, N. (2021). Non-tactile Thumb Tip Measurement System for Encouraging Rehabilitation After Surgery. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Bevilacqua, V. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12836. Springer, Cham. https://doi.org/10.1007/978-3-030-84522-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84522-3_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84521-6

  • Online ISBN: 978-3-030-84522-3

  • eBook Packages: Computer ScienceComputer Science (R0)