Skip to main content

Corneal Cross-Linking at the Slit Lamp

  • Chapter
  • First Online:
Keratoconus

Abstract

CXL can be efficaciously performed outside of the Operating Rooms (ORs), ideally at the slit lamp. This approach could take numerous advantages, as it lowers costs and brings CXL technology away from ORs. This chapter discusses how CXL technology can be safely incorporated into the medical office, respecting indications, in remote areas where an OR is not available or in large centers where the efficiency and costs can be optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Randleman JB, Khandelwal SS, Hafezi F. Corneal cross-linking. Surv Ophthalmol. 2015;60(6):509–23.

    Article  Google Scholar 

  2. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.

    Article  CAS  Google Scholar 

  3. Tabandeh H, Boscia F, Sborgia A, et al. Endophthalmitis associated with intravitreal injections: office-based setting and operating room setting. Retina. 2014;34(1):18–23.

    Article  Google Scholar 

  4. Ianchulev T, Litoff D, Ellinger D, Stiverson K, Packer M. Office-based cataract surgery: population health outcomes study of more than 21 000 cases in the United States. Ophthalmology. 2016;123(4):723–8.

    Article  Google Scholar 

  5. U.S. Department of Health and Human Services CfMaMS. Medicare program; Re- visions to payment policies under the physician fee schedule and other revisions to Part B for CY 2016; Proposed rule. Federal Register 2015. 2016;80:41700.

    Google Scholar 

  6. Hafezi F, Randleman JB. PACK-CXL: defining CXL for infectious keratitis. J Refract Surg. 2014;30(7):438–9.

    Article  Google Scholar 

  7. Kling S, Hufschmid FS, Torres-Netto EA, et al. High fluence increases the antibacterial efficacy of PACK cross-linking. Cornea. 2020;39(8):1020–6.

    Article  Google Scholar 

  8. Hayes S, Boote C, Kamma-Lorger CS, et al. Riboflavin/UVA collagen cross-linking-induced changes in normal and keratoconus corneal stroma. PLoS One. 2011;6(8):e22405.

    Google Scholar 

  9. Martins SA, Combs JC, Noguera G, et al. Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis. Invest Ophthalmol Vis Sci. 2008;49(8):3402–8.

    Article  Google Scholar 

  10. Naseem I, Ahmad M, Hadi SM. Effect of alkylated and intercalated DNA on the generation of superoxide anion by riboflavin. Biosci Rep. 1988;8(5):485–92.

    Article  CAS  Google Scholar 

  11. Pileggi G, Wataha JC, Girard M, et al. Blue light-mediated inactivation of Enterococcus faecalis in vitro. Photodiagnosis Photodyn Ther. 2013;10(2):134–40.

    Article  CAS  Google Scholar 

  12. Tsugita A, Okada Y, Uehara K. Photosensitized inactivation of ribonucleic acids in the presence of riboflavin. Biochim Biophys Acta. 1965;103(2):360–3.

    Article  CAS  Google Scholar 

  13. Richoz O, Kling S, Hoogewoud F, et al. Antibacterial efficacy of accelerated photoactivated chromophore for keratitis-corneal collagen cross-linking (PACK-CXL). J Refract Surg. 2014;30(12):850–4.

    Article  Google Scholar 

  14. Lang PZ, Hafezi NL, Khandelwal SS, Torres-Netto EA, Hafezi F, Randleman JB. Comparative functional outcomes after corneal crosslinking using standard, accelerated, and accelerated with higher total fluence protocols. Cornea. 2019;38(4):433–41.

    Article  Google Scholar 

  15. Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The Biomechanical effect of corneal collagen cross-linking (cxl) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6.

    Article  Google Scholar 

  16. Webb JN, Su JP, Scarcelli G. Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy. J Cataract Refract Surg. 2017;43(11):1458–63.

    Article  Google Scholar 

  17. Hammer A, Richoz O, Mosquera S, Tabibian D, Hoogewoud F, Hafezi F. Corneal biomechanical properties at different corneal collagen cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci. 2014;55(5):2881–4.

    Article  Google Scholar 

  18. Hammer A, Richoz O, Tabibian D, Hafezi F. The increase in biomechanical stiffness in corneal collagen cross-linking (CXL) is oxygen dependent. In: Paper presented at 106th general assembly of the Swiss Ophthalmological Society; August 28–31, 2013, 2013; Locarno, Switzerland.

    Google Scholar 

  19. Torres-Netto EA, Kling S, Hafezi N, Vinciguerra P, Randleman JB, Hafezi F. Oxygen diffusion may limit the biomechanical effectiveness of iontophoresis-assisted transepithelial corneal cross-linking. J Refract Surg. 2018;34(11):768–74.

    Article  Google Scholar 

  20. Hammer A, Richoz O, Arba Mosquera S, Tabibian D, Hoogewoud F, Hafezi F. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci. 2014;55(5):2881–4.

    Article  Google Scholar 

  21. Shajari M, Kolb CM, Agha B, et al. Comparison of standard and accelerated corneal cross-linking for the treatment of keratoconus: a meta-analysis. Acta Ophthalmol. 2019;97(1):e22–35.

    Article  Google Scholar 

  22. Turhan SA, Yargi B, Toker E. Efficacy of conventional versus accelerated corneal cross-linking in pediatric keratoconus: two-year outcomes. J Refract Surg. 2020;36(4):265–9.

    Article  Google Scholar 

  23. Salmon B, Richoz O, Tabibian D, Kling S, Wuarin R, Hafezi F. CXL at the slit lamp: no clinically relevant changes in corneal riboflavin distribution during upright UV irradiation. J Refract Surg. 2017;33(4):281.

    Article  Google Scholar 

  24. Whitcher JP, Srinivasan M. Corneal ulceration in the developing world–a silent epidemic. Br J Ophthalmol. 1997;81(8):622–3.

    Article  CAS  Google Scholar 

  25. World Health Organization. Antimicrobial resistance: global report on surveillance. http://www.who.int/drugresistance/documents/surveillancereport/en/. Published 2014. Accessed 29 Oct 2020.

  26. Wei A, Wang K, Wang Y, Gong L, Xu J, Shao T. Evaluation of corneal cross-linking as adjuvant therapy for the management of fungal keratitis. Graefes Arch Clin Exp Ophthalmol. 2019;257(7):1443–52.

    Article  Google Scholar 

  27. Knyazer B, Krakauer Y, Tailakh MA, et al. Accelerated corneal cross-linking as an adjunct therapy in the management of presumed bacterial keratitis: a cohort study. J Refract Surg. 2020;36(4):258–64.

    Article  Google Scholar 

  28. Bonzano C, Di Zazzo A, Barabino S, Coco G, Traverso CE. Collagen cross-linking in the management of microbial keratitis. Ocul Immunol Inflamm. 2019;27(3):507–12.

    Article  CAS  Google Scholar 

  29. Price MO, Price FW Jr. Corneal cross-linking in the treatment of corneal ulcers. Curr Opin Ophthalmol. 2016;27(3):250–5.

    Article  Google Scholar 

  30. Knyazer B, Krakauer Y, Baumfeld Y, Lifshitz T, Kling S, Hafezi F. Accelerated corneal cross-linking with photoactivated chromophore for moderate therapy-resistant infectious keratitis. Cornea. 2018;37(4):528–31.

    Article  Google Scholar 

  31. Kling S, Hufschmid FS, Torres-Netto EA, et al. High fluence increases the antibacterial efficacy of PACK cross-linking. Cornea. 2020;39(8):1020-26.

    Google Scholar 

  32. Hafezi F, Torres-Netto EA, Hillen MJP. Re: Prajna et al.: Cross-Linking-Assisted Infection Reduction: a randomized clinical trial evaluating the effect of adjuvant cross-linking on outcomes in fungal keratitis (Ophthalmology. 2020;127:159–66). Ophthalmology. 2021;128(1):e6.

    Google Scholar 

  33. Uysal BS, Yaman D, Sarac O, Akcay E, Cagil N. Sterile keratitis after uneventful corneal collagen cross-linking in a patient with Axenfeld-Rieger syndrome. Int Ophthalmol. 2019;39(5):1169–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio A. Torres-Netto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torres-Netto, E.A., Hosny, M., Hafezi, F. (2022). Corneal Cross-Linking at the Slit Lamp. In: Armia, A., Mazzotta, C. (eds) Keratoconus. Springer, Cham. https://doi.org/10.1007/978-3-030-84506-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84506-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84505-6

  • Online ISBN: 978-3-030-84506-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics