Skip to main content

Enhanced Trans-Epithelial Accelerated Crosslinking Protocols: The Way Out of Future CXL

  • Chapter
  • First Online:
Keratoconus

Abstract

Epi-On CXL protocols are actually considered the “way out of CXL” eliminating the risk of corneal infections, stromal scarring and thinning, speeding up patient recovery together with the possibility of carrying out the procedure more comfortably in outpatient modality. Our research is actually focused on the development of new efficacious “enhanced” trans-epithelial ACXL protocols with higher energies, new iontophoresis, different riboflavin solutions, pulsed light exposure, with and without oxygen supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11(2):65–74.

    Article  Google Scholar 

  2. Lang PZ, Hafezi NL, Khandelwal SS, Torres-Netto EA, Hafezi F, Randleman JB. Comparative functional outcomes after corneal crosslinking using standard, accelerated, and accelerated with higher total fluence protocols. Cornea. 2019;38(4):433–41.

    Google Scholar 

  3. Kobashi H, Tsubota K. Accelerated versus standard corneal cross-linking for progressive keratoconus: a meta-analysis of randomized controlled trials. Cornea. 2020;39(2):172–80.

    Article  Google Scholar 

  4. Mazzotta C, Raiskup F, Hafezi F, Torres-Netto EA, Armia Balamoun A, Giannaccare G, Bagaglia SA. Long term results of accelerated 9 mW corneal crosslinking for early progressive keratoconus: The Siena eye-cross study 2. Eye Vis (Lond). 2021;8(1):16.

    Google Scholar 

  5. Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg. 2009;35(5):893.

    Article  Google Scholar 

  6. Leccisotti A, Islam T. Transepithelial corneal collagen cross-linking in keratoconus. J Refract Surg. 2010;26(12):942–8.

    Article  Google Scholar 

  7. Ghanem VC, Ghanem RC, de Oliveira R. Postoperative pain after corneal collagen cross-linking. Cornea. 2013;32(1):20–4.

    Article  Google Scholar 

  8. Dhawan S, Rao K, Natrajan S. Complications of corneal collagen cross-linking. J Ophthalmol. 2011;2011:869015.

    Google Scholar 

  9. Franch A, Birattari F, Dal Mas G, Lužnik Z, Parekh M, Ferrari S, Ponzin D. Evaluation of intrastromal riboflavin concentration in human corneas after three corneal cross-linking imbibition procedures: a pilot study. J Ophthalmol. 2015;2015:794256. https://doi.org/10.1155/2015/794256.

  10. Koppen C, Wouters K, Mathysen D, Rozema J, Tassignon MJ. Refractive and topographic results of benzalkonium chloride-assisted transepithelial crosslinking. J Cataract Refract Surg. 2012;38(6):1000–5.

    Article  Google Scholar 

  11. Caporossi A, Mazzotta C, Paradiso AL, Baiocchi S, Marigliani D, Caporossi T. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg. 2013;39(8):1157–63.

    Article  Google Scholar 

  12. Gatzioufas Z, Raiskup F, O’Brart D, Spoerl E, Panos GD, Hafezi F. Transepithelial corneal cross-linking using an enhanced riboflavin solution. J Refract Surg. 2016;32(6):372–7.

    Article  Google Scholar 

  13. Mastropasqua L, Nubile M, Calienno R, Mattei PA, Pedrotti E, Salgari N, Mastropasqua R, Lanzini M. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol. 2014;157(3):623–30.

    Article  CAS  Google Scholar 

  14. Laborante A, Longo C, Mazzilli E, Giardinelli K. Corneal iontophoresis and cross linking: a preliminary report of our experience. Clin Ter. 2015;166(4):e254–6. https://doi.org/10.7417/T.2015.1869 PMID: 26378758.

    Article  CAS  PubMed  Google Scholar 

  15. Mazzotta C, Traversi C, Mellace P, Bagaglia SA, Zuccarini S, Mencucci R, Jacob S. Keratoconus progression in patients with allergy and elevated surface matrix metalloproteinase 9 point-of-care test. Eye Contact Lens. 2018;44(Suppl 2):S48–53.

    Article  Google Scholar 

  16. Claessens JLJ, Godefrooij DA, Vink G, Frank LE, Wisse RPL. Nationwide epidemiological approach to identify associations between keratoconus and immune-mediated diseases. Br J Ophthalmol. 2021;bjophthalmol-2021–318804. https://doi.org/10.1136/bjophthalmol-2021-318804. Epub ahead of print. PMID: 33879468.

  17. Hayes S, Morgan SR, O’Brart DP, O’Brart N, Meek KM. A study of stromal riboflavin absorption in ex vivo porcine corneas using new and existing delivery protocols for corneal cross-linking. Acta Ophthalmol. 2016;94(2):e109–17.

    Article  CAS  Google Scholar 

  18. Bikbova G, Bikbov M. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol. 2014;92(1):e30–4.

    Article  CAS  Google Scholar 

  19. Vinciguerra P, Romano V, Rosetta P, et al. Transepithelial iontophoresis versus standard corneal collagen cross-linking: 1-year results of a prospective clinical study. J Refract Surg. 2016;32(10):672–8.

    Article  Google Scholar 

  20. Jouve L, Borderie V, Sandali O, et al. Conventional and iontophoresis corneal cross-linking for keratoconus: efficacy and assessment by optical coherence tomography and confocal microscopy. Cornea. 2017;36(2):153–62.

    Article  Google Scholar 

  21. Kolozsvári L, Nógrádi A, Hopp B, Bor Z. UV absorbance of the human cornea in the 240- to 400-nm range. Invest Ophthalmol Vis Sci. 2002;43(7):2165–8.

    PubMed  Google Scholar 

  22. Freeman RD. Oxygen consumption by the component layers of the cornea. J Physiol. 1972;225(1):15–32.

    Article  CAS  Google Scholar 

  23. Mazzotta C, Bagaglia SA, Vinciguerra R, Ferrise M, Vinciguerra P. Enhanced-fluence pulsed-light iontophoresis corneal cross-linking: 1-year morphological and clinical results. J Refract Surg. 2018;34(7):438-44.

    Google Scholar 

  24. Mazzotta C, Bagaglia SA, Sgheri A, Di Maggio A, Fruschelli M, Romani A, Vinciguerra R, Vinciguerra P, Tosi GM. Iontophoresis corneal cross-linking with enhanced fluence and pulsed UV-A light: 3-year clinical results. J Refract Surg. 2020;36(5):286–92.

    Article  Google Scholar 

  25. Mazzotta C, Moramarco A, Traversi C, Baiocchi S, Iovieno A, Fontana L. Accelerated corneal collagen cross-linking using topography-guided UV-A energy emission: preliminary clinical and morphological outcomes. J Ophthalmol. 2016;2016:2031031.

    Article  Google Scholar 

  26. Mazzotta C, Traversi C, Caragiuli S, Rechichi M. Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT. Eye (Lond). 2014;28(10):1179–83.

    Article  CAS  Google Scholar 

  27. Kamaev P, Friedman MD, Sherr E, Muller D. Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci. 2012;53(4):2360–7.

    Article  Google Scholar 

  28. Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The biomechanical effect of corneal collagen cross-linking (cxl) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6.

    Article  Google Scholar 

  29. Hill J, Liu C, Deardorff P, Tavakol B, Eddington W, Thompson V, Gore D, Raizman M, Adler DC. Optimization of oxygen dynamics, UV-A delivery, and drug formulation for accelerated epi-on corneal crosslinking. Curr Eye Res. 2020;45(4):450–8.

    Article  CAS  Google Scholar 

  30. Mazzotta C, Sgheri A, Bagaglia SA, Rechichi M, Di Maggio A. Customized corneal crosslinking for treatment of progressive keratoconus: clinical and OCT outcomes using a transepithelial approach with supplemental oxygen. J Cataract Refract Surg. 2020;46(12):1582–7.

    Article  Google Scholar 

  31. Mazzotta C, Ferrise M, Gabriele G, Gennaro P, Meduri A. Chemically-boosted corneal cross-linking for the treatment of keratoconus through a riboflavin 0.25% optimized solution with high superoxide anion release. J Clin Med. 2021;10(6):1324.

    Google Scholar 

  32. Fredriksson A, Näslund S, Behndig A. A prospective evaluation of photorefractive intrastromal cross-linking for the treatment of low-grade myopia. Acta Ophthalmol. 2020;98(2):201–6.

    Article  Google Scholar 

  33. Sachdev GS, Ramamurthy S, Dandapani R. Photorefractive intrastromal corneal crosslinking for treatment of low myopia: clinical outcomes using the transepithelial approach with supplemental oxygen. J Cataract Refract Surg. 2020;46(3):428–33.

    Article  Google Scholar 

  34. Seiler TG, Komninou MA, Nambiar MH, Schuerch K, Frueh BE, Büchler P. Oxygen kinetics during corneal cross-linking with and without supplementary oxygen. Am J of Ophth. 2021;223:368–76.

    Article  CAS  Google Scholar 

  35. Wang J, Wang L, Li Z, Wang YM, Zhu K, Mu G. Corneal biomechanical evaluation after conventional corneal crosslinking with oxygen enrichment. Eye Contact Lens. 2020;46(5):306–9.

    Article  Google Scholar 

  36. Stodulka P, Halasova Z, Slovak M, et al. Photorefractive intrastromal crosslinking for correction of hyperopia: 12-month results. J Cataract Refract Surg. 2020;46(3):434–40.

    Article  Google Scholar 

  37. Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE. Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg. 2006;32(2):279–83.

    Article  Google Scholar 

  38. Mazzotta C, Romani A, Burroni A. Pachymetry-based accelerated cross-linking: the “M Nomogram” for standardized treatment of all-thickness progressive ectatic corneas. Int J Keratoconus Ectatic Corneal Dis. 2019;7(2):137–44.

    Article  Google Scholar 

  39. Mazzotta C, Wollensak G, Raiskup F, Pandolfi AM, Spoerl E. The meaning of the demarcation line after riboflavin-UVA corneal collagen crosslinking. Expert Rev Ophthalmol. 2019;115–31. https://doi.org/10.1080/17469899.2019.1611425.

  40. Torres-Netto EA, Kling S, Hafezi N, Vinciguerra P, Randleman JB, Hafezi F. Oxygen diffusion may limit the biomechanical effectiveness of iontophoresis-assisted transepithelial corneal cross-linking. J Refract Surg. 2018;34(11):768–74.

    Article  Google Scholar 

  41. Aldahlawi NH, Hayes S, O’Brart DP, et al. An investigation into corneal enzymatic resistance following epithelium-off and epithelium-on corneal cross-linking protocols. Exp Eye Res. 2016;153:141–51.

    Article  CAS  Google Scholar 

  42. Weadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res. 1995;29(11):1373–9.

    Article  CAS  Google Scholar 

  43. Lanchares E, del Buey MA, Cristóbal JA, Lavilla L, Calvo B. Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time. Graefes Arch ClinExp Ophthalmol. 249(8):1223–7.

    Google Scholar 

  44. Roy AS, Dupps WJ Jr. Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking. Invest Ophthalmol Vis Sci. 2011;52(12):9174–87.

    Google Scholar 

  45. Roberts CJ, Dupps WJ Jr Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40(6):991–8.

    Google Scholar 

  46. Sinha Roy A, Rocha KM, Randleman JB, Stulting RD, Dupps WJ Jr. Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus. Exp Eye Res. 2013;113:92–104.

    Article  CAS  Google Scholar 

  47. Seven I, Sinha Roy A, Dupps WJ Jr. Patterned corneal collagen crosslinking for astigmatism: computational modeling study. J Cataract Refract Surg. 2014;40(6):943–53.

    Article  Google Scholar 

  48. Kamiya K, Kanayama S, Takahashi M, Shoji N. Visual and topographic improvement with epithelium-on, oxygen-supplemented, customized corneal cross-linking for progressive keratoconus. J Clin Med. 2020;9(10):3222.

    Article  Google Scholar 

  49. Aydın E, Aslan MG. The efficiency and safety of oxygen-supplemented accelerated transepithelial corneal cross-linking. Int Ophthalmol. 2021. https://doi.org/10.1007/s10792-021-01859-1. Epub ahead of print. PMID: 33876334.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzotta, C., Barbara, A., Di Maggio, A., Pintore, P. (2022). Enhanced Trans-Epithelial Accelerated Crosslinking Protocols: The Way Out of Future CXL. In: Armia, A., Mazzotta, C. (eds) Keratoconus. Springer, Cham. https://doi.org/10.1007/978-3-030-84506-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84506-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84505-6

  • Online ISBN: 978-3-030-84506-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics