Skip to main content

IOL’S For Visual Rehabilitation in Stable Keratocounus

  • Chapter
  • First Online:
Keratoconus

Abstract

Despite intraocular lenses (IOLs) power calculation in Keratoconus patients is quite challenging requiring more parameters calculation and accurate selection criteria due to the irregularity of the cornea, high order aberrations and irregular astigmatism, IOL’s represent a powerful tool for visual rehabilitation in patients with stable or CXL-stabilized Keratoconus. Overviewing IOL’s for visual rehabilitation in KC, the chapter illustrates the novel technologies for accurate diagnosis and formulas to optimize postoperative outcomes.

To my wife Vivian, my daughter Carol and my Son Karim. To my great father and mentor Armia. And to all our dear co-authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moramarco A, Mastrofilippo V, Romano M, Iannetta D, Braglia L, Fontana L. Efficacy and safety of accelerated corneal cross-linking for progressive keratoconus: a 5-Year follow-up study. J Refract Surg. 2020;36:724–30. https://doi.org/10.3928/1081597X-20200819-01.

    Article  PubMed  Google Scholar 

  2. Carlson AN. Expanding our understanding of eye rubbing and keratoconus. Cornea. 2010;29(2):245.

    Article  Google Scholar 

  3. Gordon-Shaag A, Millodot M, Shneor E, Liu Y. The genetic and environmental factors for keratoconus. Biomed Res Int . 2015:795–738.

    Google Scholar 

  4. Vinciguerra P, Piscopo R, Camesasca F, Vinciguerra R. Progression in keratoconus. Int J Keratoconus and Ectatic Corneal Dis. 2016;5(1):21–31.

    Article  Google Scholar 

  5. Shetty R, et al. Repeatability and agreement of three Scheimpflug-based imaging systems for measuring anterior segment parameters in keratoconus. Invest Ophthalmol Vis Sci. 2014;55(8):5263–8.

    Article  Google Scholar 

  6. Shetty R et al. Keratoconus screening indices and their diagnostic ability to distinguish normal from ectatic corneas. American Journal of Ophthalmology 2017. 181. https://doi.org/10.1016/j.ajo.2017.06.031.

  7. Neuhann S, Schuh A, Krause D, et al. Comparison of variables measured with a Scheimpflug device for evaluation of progression and detection of keratoconus. Sci Rep. 2020;10:19308.

    Article  CAS  Google Scholar 

  8. Kanellopoulos AJ, Aslanides IM, Asimellis G. Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL; is overall epithelial thickness a very early ectasia prognostic factor? Clin Ophthalmol. 2012;6:789–800.

    Article  CAS  Google Scholar 

  9. Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography XE “optical coherence tomography” in normal and keratoconic eye. Ophthalmology. 2012;119(12):2425–33.

    Article  Google Scholar 

  10. Serrao S, et al. Role of corneal epithelial thickness mapping in the evaluation of keratoconus. Contact Lens and Anterior Eye. 42(6):662–665.

    Google Scholar 

  11. Fontes B, Ambrósio R, Velarde G, Nosé W. Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes. J Refract Surg. 2011;27:209–15.

    Article  Google Scholar 

  12. Pniakowska Z, Jurowski P. Detection of the early keratoconus based on corneal biomechanical properties in the refractive surgery candidates. 2016. 64(2):109–13.

    Google Scholar 

  13. Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking. J Refract Surg. 2014;30(6):408–14.

    Article  Google Scholar 

  14. Lanza M, Cennamo M, Iaccarino S, Irregolare C, Rechichi M, Bifani M, Gironi Carnevale UA. Evaluation of corneal deformation analyzed with Scheimpflug based device in healthy eyes and diseased ones. Biomed Res Int 2014;2014:748671.

    Google Scholar 

  15. Terai N, Raiskup F, Haustein M, Pillunat LE, Spoerl E. Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res. 2012;37(7):553–62.

    Article  Google Scholar 

  16. Roberts, CJ. Biomechanics in keratoconus. Barbara, A., Textbook on keratoconus: new insights. New Delhi: Jaypee Brothers Medical Publishers; 2012. p. 29.

    Google Scholar 

  17. Scholtz S, Cayless A, Langenbucher A, Calculating the Human Eye, Basics on Biometry, in: Liu C and Bardan AS (Eds): Cataract Surgery, Pearls and Techniques, 978–3–030–38233–9, 459250_1_En, (Chapter 7), Springer, 1/2021, S. 87 – 114.

    Google Scholar 

  18. Soeters N, Muijzer MB, Molenaar J, Godefrooij DA, Wisse RPL. Autorefraction versus manifest refraction in patients with keratoconus. J Refract Surg. 2018;34(1):30–4.

    Article  Google Scholar 

  19. Elliott DB. What is the appropriate gold standard test for refractive error? Ophthalmic Physiol Opt. 2017;37:115–7.

    Article  Google Scholar 

  20. Momeni-Moghaddam H, Goss DA. Comparison of four different binocular balancing techniques. Clin Exp Optom. 2014;97:422–5.

    Article  Google Scholar 

  21. Doroodgar F, Niazi F, Sanginabadi A, et al. Comparative analysis of the visual performance after implantation of the toric implantable collamer lens in stable keratoconus: a 4-year follow-up after sequential procedure (CXL+TICL implantation) BMJ Open Ophthalmology 2017;2:e000090.

    Google Scholar 

  22. Davis LJ, Schechtman KB, Wilson BS, Rosenstiel CE, Riley CH, Libassi DP, Gundel RE, Rosenberg L, Gordon MO, Zadnik K. The Collaborative Longitudinal Evaluation of Keratoconus (CLEK) study group; longitudinal changes in visual acuity in keratoconus. Invest Ophthalmol Vis Sci. 2006;47(2):489–500. https://doi.org/10.1167/iovs.05-0381.

    Article  PubMed  Google Scholar 

  23. Carracedo G, Recchioni A, Alejandre-Alba N, et al. Signs and symptoms of dry eye in keratoconus patients: a pilot study. Curr Eye Res. 2015;40(11):1088–94.

    Article  Google Scholar 

  24. Srinivasan S. Phakic intraocularlenses: lessons learned. J Cataract Refract Surg. 2019;45:1529–30.

    Article  Google Scholar 

  25. Li K, Wang Z, Zhang D, Wang S, Song X, Li Y, Wang MX. Visual outcomes and corneal biomechanics after V4c implantable collamer lens implantation in subclinical keratoconus. J Cataract Refract Surg. 2020;46(10):1339–45.

    Article  Google Scholar 

  26. Davis LJ, Schechtman KB, Begley CG, Shin JA, Zadnik K; The CLEK Study Group. Repeatability of refraction and corrected visual acuity in keratoconus. Optom Vis Sci. 1998;75:887–896.

    Google Scholar 

  27. Boxer Wachler BS, Vicente LL. Optimizing the vault of collagen copolymer phakic intraocular lenses in eyes with keratoconus and myopia: comparison of 2 methods. J Cataract Refract Surg. 2010;36(10):1741–4.

    Article  Google Scholar 

  28. Garcia-Feijoo J, et al. Ultrasound examination of posterior chamber phakic intraocular lens position. Ophthalmology. 2003;110:163–72.

    Article  Google Scholar 

  29. Koivula A, Taube M, Zetterstro ̈m C. Phakic refractive lens: two-year results. J Refract Surg. 2008;24:507–15.

    Google Scholar 

  30. Sharma M, Jain N, Koshy AS, Arora V, Lalgudi VG. Repeatability of Orbscan III for anterior segment parameters in normal eyes 2020, Volume: 68, Issue Number: 12, Page: 2903–5.

    Google Scholar 

  31. Baumeister M, Terzi E, Ekici Y, Kohnen T. Comparison of manual and automated methods to determine horizontal corneal diameter. J Cataract Refract Surg. 2004;30:374–80.

    Article  Google Scholar 

  32. Park SC, Kwun YK, Chung E-S, Ahn K, Chung T-Y. Postoperative astigmatism and axis stability after implantation of the STAAR Toric Implantable Col- lamer Lens. J Refract Surg. 2009;25:403–9.

    Article  Google Scholar 

  33. Panda P, Ostrovsky A, Brodie S, Speaker M. Impact of Ultrasound Biomicroscopy (UBM) versus White-to-White (WTW) measurement on sizing of Visian Implantable Collamer Lens (ICL) and Residual Postoperative Refraction. Invest Ophthalmol Vis Sci. 2013;54(15):850.

    Google Scholar 

  34. Savini G, Schiano-Lomoriello D, Hoffer KJ. Repeatability of automatic measurements by a new anterior segment optical coherence tomographer combined with Placido topography and agreement with 2 Scheimpflug cameras. J Cataract Refract Surg. 2018;44(4):471–8. https://doi.org/10.1016/j.jcrs.2018.02.015 Epub 2018 Apr 25.

    Article  PubMed  Google Scholar 

  35. Alio JL, Garcia PP, Guliyeve FA, et al. MICS with toric intraocular lens in keratoconus: outcomes and predictability analysis of postoperative refraction. Br J Ophthalmol. 2014;98(3):365–70.

    Article  Google Scholar 

  36. Akman A, Asena L, Güngör SG. Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. Br J Ophthalmol. 2016;100(9):1201–5. https://doi.org/10.1136/bjophthalmol-2015-307779.

    Article  PubMed  Google Scholar 

  37. Zhang L, Sy ME, Mai H, Yu F, Hamilton DR. Effect of posterior corneal astigmatism on refractive outcomes after toric intraocular lens implantation. J Cataract Refract Surg 2015; 41:84–9. Q 2015 ASCRS and ESCRS.

    Google Scholar 

  38. Lee H, Kim T-I, Kim EK. Corneal astigmatism analysis for toric intraocular lens implantation: precise measurement for perfect correction. Curr Opin Ophthalmol. 2015;26:34–8.

    Article  Google Scholar 

  39. Cooke DL, Cooke TL, Prediction accuracy of preinstalled formulas on 2 optical biometers. J Cataract Refract Surg 2016; 42:358–62. Q 2016 ASCRS and ESCRS.

    Google Scholar 

  40. Thebpatiphat N, Hammersmith KM, Rapuano CJ, et al. Cataract surgery in keratoconus. Eye Contact Lens. 2007;33:244–6.

    Article  Google Scholar 

  41. Bozorog S, Pineda R. Cataract and keratoconus: Minimizing complications in intraocular lens calculations. Sem Ophthalmol. 2014;29(5–6):376–9.

    Article  Google Scholar 

  42. Larkin, IOLCon database awaits input, International internet database updates and optimises IOL constants, EuroTimes, March 2021, p. 19. https://www.eurotimes.org/iol-con-database-awaits-input/.

  43. McCommon, IOLCon: Data Collaboration is the Future, CAKE Magazine, September 4, 2020. https://cakemagazine.org/iolcon-data-collaboration-is-the-future/.

  44. Charters L, An international encyclopedic database for IOL specifications, The IOLCon platform optimizes intraocular lens constants, Ophthalmology Times Europe, April 2019, https://www.ophthalmologytimes.com/iols/international-encyclopedic-database-iol-specifications.

  45. Scholtz S, Internet database “IOLCon”, Biometry today, its challenges and the benefits, EUROPEAN OPHTHAMOLOGY NEWS (ESCRS), 9/2019, p. 2.

    Google Scholar 

  46. IOL constants database ready for use, EyeOnOptics, https://www.eyeonoptics.co.nz/articles/archive/iol-constants-database-ready-for-use/.

  47. Scholtz SK (2019) Editorial. J Eye Stud Treat. 2019;(1): 31–2. https://ospopac.com/journal/eye-study-treatment/present-issue/Editorial-Journal-of-Eye-Study-and-Treatment

  48. Scholtz S, Langenbucher A, (Un)avoidable errors in biometry, Eye Stud Treat. 2020;(1):73–75. https://ospopac.com/journal/eye-study-treatment/special-issue/UnAvoidable-Errors-in-Biometry.

  49. Trindade BLC, Trindade FC, Trindade CLC, Santhiago MR. Phacoemulsi- fication with intraocular pinhole implantation associated with Descemet membrane endothelial keratoplasty to treat failed full-thickness graft with dense cataract. J Cataract Refract Surg. 2018;44:1280–3.

    Article  Google Scholar 

  50. Trindade CC, Trindade BC, Trindade FC, Werner L, Osher R, Santhiago MR. New pinhole sulcus implant for the correction of irregular corneal astigmatism. J Cataract Refract Surg. 2017;43:1297–306.

    Article  Google Scholar 

  51. Tsaousis KT, Werner L, Trindade CLC, Guan J, Li J, Reiter N. Assessment of a novel pinhole supplementary implant for sulcus fixation in pseudophakic cadaver eyes. Eye (Lond). 2018;32:637–45.

    Article  CAS  Google Scholar 

  52. Grabner G, Ang RE, Vilupuru S. The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients. Am J Ophthalmol. 2015;160:1176-1184.e1.

    Article  Google Scholar 

  53. Bellucci R. Multifocal intraocular lenses. Curr Opin Ophthalmol. 2005;16:33–7.

    Article  Google Scholar 

  54. Shajari M, Steinwender G, Herrmann K, Kubiak KB, Pavlovic I, Plawetzki E, Schmack I, Kohnen T. Evaluation of keratoconus progression. Br J Oph- thalmol. 2019;103:551–7.

    Article  Google Scholar 

  55. Shajari M, Friderich S, PourSadeghian M, Schmack I, Kohnen T. Character- istics of corneal astigmatism of anterior and posterior surface in a normal control group and patients with keratoconus. Cornea. 2017;36:457–62.

    Article  Google Scholar 

  56. Hooshmand J, Allen P, Huynh T, Chan C, Singh R, Moshegov C, Agarwal S, Thornell E, Vote BJ. Small aperture IC-8 intraocular lens in cataract patients: achieving extended depth of focus through small aperture optics. Eye (Lond). 2019;33:1096–103.

    Article  Google Scholar 

  57. Schröder S, Schrecker J, Daas L, Eppig T, Langenbucher A. Impact of intraocular lens displacement on the fixation axis. J Opt Soc Am A. 2018;35:561–6.

    Article  Google Scholar 

  58. Zhu Z, Janunts E, Eppig T, Sauer T, Langenbucher A. Tomography-based customized IOL calculation model. Curr Eye Res. 2010;36:579–89.

    Article  Google Scholar 

  59. Noll RJ. Zernike polynomials and atmospheric turbulence. J Opt Soc Am. 1976;66:207–11.

    Article  Google Scholar 

  60. Schröder S, Eppig T, Liu W, Schrecker J, Langenbucher A. Keratoconic eyes with stable corneal tomography could benefit more from custom intraocular lens design than normal eyes. Sci Rep. 2019;9(1):3479.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armia, A., Adib-Moghaddam, S., Tarib, I. (2022). IOL’S For Visual Rehabilitation in Stable Keratocounus. In: Armia, A., Mazzotta, C. (eds) Keratoconus. Springer, Cham. https://doi.org/10.1007/978-3-030-84506-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84506-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84505-6

  • Online ISBN: 978-3-030-84506-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics