Skip to main content

Valorization of Peach (Prunus persica) Fruit Waste

  • Chapter
  • First Online:
Mediterranean Fruits Bio-wastes

Abstract

Peach (Prunus persica) fruit belongs to the rose family (Rosaceae), and it is widely cultivated in the warmer temperate regions of North America, Africa, and Asia. The processing of peach fruit generates a massive amount of peach fruit waste (PFW). The PFW consists of a mixture of skin, seeds, and some pieces of fruit. The PFW has been recognized as a good source of bioactive compounds like phenolic compounds, vitamins, flavors, and volatiles. These bioactive components may play a significant role due to their anti-nociceptive, antitoxic, anti-inflammatory, antibacterial, antioxidant, antimicrobial, nutraceutical and pharmaceutical properties. Efforts have also been made to evaluate the percentage and recovery of compounds present in PFW and other peach wastes. This chapter presents the detailed literature regarding the economic value, chemical composition, bioactive compounds, biological importance, functional properties, food and non-food application, and valorization of PFW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidi, W., Jiménez, S., Moreno, M. Á., & Gogorcena, Y. (2011). Evaluation of antioxidant compounds and total sugar content in a nectarine [Prunus persica (L.) Batsch] progeny. International Journal of Molecular Sciences, 12(10), 6919–6935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aluko, R. E. (2012). Functional foods and nutraceuticals (pp. 37–61). Springer.

    Book  Google Scholar 

  • Argun, H., Kargi, F., Kapdan, I. K., & Oztekin, R. (2008). Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy, 33(7), 1813–1819.

    Article  CAS  Google Scholar 

  • Ayadi, M. A., Abdelmaksoud, W., Ennouri, M., & Attia, H. (2009). Cladodes from Opuntia ficus indica as a source of dietary fiber: Effect on dough characteristics and cake making. Industrial Crops and Products, 30(1), 40–47.

    Article  CAS  Google Scholar 

  • Ayala-Zavala, J. F., Rosas-Domínguez, C., Vega-Vega, V., & González-Aguilar, G. A. (2010). Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own byproducts: Looking for integral exploitation. Journal of Food Science, 75(8), R175–R181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak, I., Lekli, I., Juhasz, B., Varga, E., Varga, B., Gesztelyi, R., Szendrei, L., & Tosaki, A. (2010). Isolation and analysis of bioactive constituents of sour cherry (Prunus cerasus) seed kernel: An emerging functional food. Journal of Medicinal Food, 13(4), 905–910.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, 225, 10–22.

    Article  CAS  PubMed  Google Scholar 

  • Calgaroto, C., Pilecco, J., Oliveira, M. P. D., Furlan, L., & Zambiazi, R. (2005). Extraction and characterization of peach almond oil. Proceeding of XIV Scientific Initiation Congress of the Federal University of Pelotas, Pelotas

    Google Scholar 

  • Cevallos-Casals, B. A., Byrne, D., Okie, W. R., & Cisneros-Zevallos, L. (2006). Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chemistry, 96(2), 273–280.

    Article  CAS  Google Scholar 

  • Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2004). Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chemistry, 86(1), 69–77.

    Article  CAS  Google Scholar 

  • Crain-Zamora, M., & Reed, D. W. (2017). Organic acid production from food wastes using Gluconobacter oxydans: A possible source of cheaper lixiviants for leaching REE from end-of-life products (No. INL/EXT-17-42939). Idaho National Lab. (INL), Idaho Falls, ID (United States)

    Google Scholar 

  • Das, D., & Veziroǧlu, T. N. (2001). Hydrogen production by biological processes: A survey of literature. International Journal of Hydrogen Energy, 26(1), 13–28.

    Article  CAS  Google Scholar 

  • Das, D., & Veziroǧlu, T. N. (2008). Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 33(21), 6046–6057.

    Article  CAS  Google Scholar 

  • Davey, M. W., Montagu, M. V., Inze, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I. J., Strain, J. J., Favell, D., & Fletcher, J. (2000). Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80(7), 825–860.

    Article  CAS  Google Scholar 

  • Davidson, P. M., & Branden, A. L. (1981). Antimicrobial activity of non-halogenated phenolic compounds. Journal of Food Protection, 44(8), 623–632.

    Article  CAS  PubMed  Google Scholar 

  • Đilas, S., Čanadanović-Brunet, J., & Ćetković, G. (2009). By-products of fruits processing as a source of phytochemicals. Chemical Industry and Chemical Engineering Quarterly/CICEQ, 15(4), 191–202.

    Article  Google Scholar 

  • Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews.

    Google Scholar 

  • Duthie, G. G., Duthie, S. J., & Kyle, J. A. (2000). Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutrition Research Reviews, 13(1), 79–106.

    Article  CAS  PubMed  Google Scholar 

  • Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411–421.

    Article  CAS  Google Scholar 

  • Endress, H. U. (1991). Nonfood uses of pectin (pp. 251–268). Academic Press.

    Google Scholar 

  • Fagundes, L. A. (2002). Ômega-3 & Ômega-6: o equilíbrio dos ácidos gordurosos essenciais na prevenção de doenças (p. 111). Fundação de Radioterapia do Rio Grande do Sul.

    Google Scholar 

  • Fernández-López, J. A., Fernández-Lledó, V., & Angosto, J. M. (2020). New insights into red plant pigments: More than just natural colorants. RSC Advances, 10(41), 24669–24682.

    Article  Google Scholar 

  • Francis, F. J., & Markakis, P. C. (1989). Food colorants: Anthocyanins. Critical Reviews in Food Science and Nutrition, 28(4), 273–314.

    Article  CAS  PubMed  Google Scholar 

  • Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science and Technology, 26(2), 68–87.

    Article  CAS  Google Scholar 

  • Garcıa, A. J., Esteban, M. B., Marquez, M. C., & Ramos, P. (2005). Biodegradable municipal solid waste: Characterization and potential use as animal feedstuffs. Waste Management, 25(8), 780–787.

    Article  PubMed  Google Scholar 

  • Garcia-Amezquita, L. E., Tejada-Ortigoza, V., Serna-Saldivar, S. O., & Welti-Chanes, J. (2018). Dietary fiber concentrates from fruit and vegetable by-products: Processing, modification, and application as functional ingredients. Food and Bioprocess Technology, 11(8), 1439–1463.

    Article  CAS  Google Scholar 

  • Gavrilescu, D. (2008). Energy from biomass in pulp and paper mills. Environmental Engineering and Management Journal, 7(5).

    Google Scholar 

  • Guo, M., Song, W., & Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712–725.

    Article  CAS  Google Scholar 

  • Gupta, M., Arora, R., & Mandal, D. (2021). Peach. In Temperate fruits (pp. 247–296). Apple Academic Press.

    Google Scholar 

  • Hollman, P. C. H., & Arts, I. C. W. (2000). Flavonols, flavones and flavanols-nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1081–1093.

    Article  CAS  Google Scholar 

  • IEA, I. (2017). Technology roadmap: Delivering sustainable bioenergy

    Google Scholar 

  • Kaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables-the millennium’s health. International Journal of Food Science and Technology, 36(7), 703–725.

    Article  CAS  Google Scholar 

  • Kaynak, B., Topal, H., & Atimtay, A. T. (2005). Peach and apricot stone combustion in a bubbling fluidized bed. Fuel Processing Technology, 86(11), 1175–1193.

    Article  CAS  Google Scholar 

  • Khan, N., le Roes-Hill, M., Welz, P. J., Grandin, K. A., Kudanga, T., Van Dyk, J. S., Ohlhoff, C., Van Zyl, W. H., & Pletschke, B. I. (2015). Fruit waste streams in South Africa and their potential role in developing a bio-economy. South African Journal of Science, 111(5–6), 1–11.

    Article  Google Scholar 

  • Kowalczyk, R., & Piwnicki, K. (2007). Fruit pits as a valuable secondary raw material for the food industry. Advances in Food Processing Techniques, 62–66.

    Google Scholar 

  • Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Application of various chemical methods to determine antioxidant activity in fruit pulp. Food Science and Technology, 25(4), 726–732.

    Article  CAS  Google Scholar 

  • Legua, P., Hernández, F., Díaz-Mula, H. M., Valero, D., & Serrano, M. (2011). Quality, bioactive compounds, and antioxidant activity of new flat-type peach and nectarine cultivars: A comparative study. Journal of Food Science, 76(5), C729–C735.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. The Journal of Nutrition, 134(12), 3479S–3485S.

    Article  CAS  PubMed  Google Scholar 

  • Loizzo, M. R., Tundis, R., Bonesi, M., Menichini, F., Mastellone, V., Avallone, L., & Menichini, F. (2012). Radical scavenging, antioxidant and metal chelating activities of Annona cherimola mill. (cherimoya) peel and pulp in relation to their total phenolic and total flavonoid contents. Journal of Food Composition and Analysis, 25(2), 179–184.

    Article  CAS  Google Scholar 

  • Mak, T. M., Xiong, X., Tsang, D. C., Iris, K. M., & Poon, C. S. (2020). Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresource Technology, 297, 122497.

    Article  CAS  PubMed  Google Scholar 

  • Marone, A., Izzo, G., Mentuccia, L., Massini, G., Paganin, P., Rosa, S., Varrone, C., & Signorini, A. (2014). Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renewable Energy, 68, 6–13.

    Article  CAS  Google Scholar 

  • Mazza, G., & Miniati, E. (1993). Introduction. Chapter 1. In Anthocyanins in fruits, vegetables, and grains (pp. 1–28). CRC Press.

    Google Scholar 

  • Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: A review. Journal of Cleaner Production, 65, 28–41.

    Article  Google Scholar 

  • Mouratoglou, E., Malliou, V., & Makris, D. P. (2016). Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste and Biomass Valorization, 7(6), 1377–1387.

    Article  CAS  Google Scholar 

  • Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes

    Google Scholar 

  • Pagán, J., Ibarz, A., Llorca, M., & Coll, L. (1999). Quality of industrial pectin extracted from peach pomace at different pH and temperatures. Journal of the Science of Food and Agriculture, 79(7), 1038–1042.

    Article  Google Scholar 

  • Palafox-Carlos, H., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2011). The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science, 76(1), R6–R15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parashar, S., Sharma, H., & Garg, M. (2014). Antimicrobial and antioxidant activities of fruits and vegetable peels: A review. Journal of Pharmacognosy and Phytochemistry, 3(1).

    Google Scholar 

  • Pisanello, D. (2014). Chemistry of foods: EU legal and regulatory approaches. Springer.

    Google Scholar 

  • Plazzotta, S., Ibarz, R., Manzocco, L., & Martín-Belloso, O. (2020). Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves. Ultrasonics Sonochemistry, 63, 104954.

    Article  CAS  PubMed  Google Scholar 

  • Prior, R. L., & Cao, G. (2000). Antioxidant phytochemicals in fruits and vegetables: Diet and health implications. HortScience, 35(4), 588–592.

    Article  CAS  Google Scholar 

  • Prior, R. L., Cao, G., Martin, A., Sofic, E., McEwen, J., O'Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G., & Mainland, C. M. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry, 46(7), 2686–2693.

    Article  CAS  Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237.

    Article  CAS  Google Scholar 

  • Reshmy, R., Philip, E., Madhavan, A., Sindhu, R., Binod, P., Balakumaran, P. A., &Pandey, A. (2021). Potential utilisation of fruit and vegetable waste: An overview sustainable bioconversion of waste to value added products, 179

    Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine, 20(7), 933–956.

    Article  CAS  Google Scholar 

  • Richardson, Y., Drobek, M., Julbe, A., Blin, J., & Pinta, F. (2015). Biomass gasification to produce syngas. In Recent advances in thermo-chemical conversion of biomass (pp. 213–250). Elsevier.

    Chapter  Google Scholar 

  • Rojas-Garbanzo, C., Pérez, A. M., Bustos-Carmona, J., & Vaillant, F. (2011). Identification and quantification of carotenoids by HPLC-DAD during the process of peach palm (Bactris gasipaes HBK) flour. Food Research International, 44(7), 2377–2384.

    Article  CAS  Google Scholar 

  • Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512–531.

    Article  CAS  PubMed  Google Scholar 

  • San Miguel, G., Makibar, J., & Fernandez-Akarregi, A. R. (2012). New advances in the fast pyrolysis of biomass. Journal of Biobased Materials and Bioenergy, 6(2), 193–203.

    Article  CAS  Google Scholar 

  • Sanchez-Vazquez, S. A., Hailes, H. C., & Evans, J. R. G. (2013). Hydrophobic polymers from food waste: Resources and synthesis. Polymer Reviews, 53(4), 627–694.

    Article  CAS  Google Scholar 

  • Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds-recent developments. Trends in Food Science and Technology, 12(11), 401–413.

    Article  CAS  Google Scholar 

  • Smith, S. A., Medina-Meza, I. G., & Ganjyal, G. M. (2017). Peaches: Value-added food products

    Google Scholar 

  • Srivastava, S., Sharma, P. K., & Kumara, S. (2015). Nutraceuticals: A review. Journal of Chronotherapy and Drug Delivery, 6, 1–10.

    CAS  Google Scholar 

  • Sun, J., Chu, Y. F., Wu, X., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50(25), 7449–7454.

    Article  CAS  PubMed  Google Scholar 

  • Tomás-Barberán, F. A., Gil, M. I., Cremin, P., Waterhouse, A. L., Hess-Pierce, B., & Kader, A. A. (2001). HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. Journal of Agricultural and Food Chemistry, 49(10), 4748–4760.

    Article  PubMed  Google Scholar 

  • Tomás-Barberán, F. A., & Robins, R. J. (1997). Phytochemistry of fruit and vegetables. International symposium of phytochemistry of fruit and vegetables (1995: Murcia, Spain). Clarendon Press.

    Google Scholar 

  • Tsantili, E., Shin, Y., Nock, J. F., & Watkins, C. B. (2010). Antioxidant concentrations during chilling injury development in peaches. Postharvest Biology and Technology, 57(1), 27–34.

    Article  CAS  Google Scholar 

  • Turatti, J. M. (2000). Óleos vegetais como fonte de alimentos funcionais. Food Ingredients, 52.

    Google Scholar 

  • Valdez-Vazquez, I., & Poggi-Varaldo, H. M. (2009). Hydrogen production by fermentative consortia. Renewable and Sustainable Energy Reviews, 13(5), 1000–1013.

    Article  CAS  Google Scholar 

  • Van Dyk, J. S., Gama, R., Morrison, D., Swart, S., & Pletschke, B. I. (2013). Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renewable and Sustainable Energy Reviews, 26, 521–531.

    Article  Google Scholar 

  • Vargas, E. F. D., Jablonski, A., Flôres, S. H., & Rios, A. D. O. (2017). Waste from peach (Prunus persica) processing used for optimisation of carotenoids ethanolic extraction. International Journal of Food Science and Technology, 52(3), 757–762.

    Article  Google Scholar 

  • Vega-Vega, V., Silva-Espinoza, B. A., Cruz-Valenzuela, M. R., Bernal-Mercado, A. T., González-Aguilar, G. A., Vargas-Arispuro, I., Corrales-Maldonado, C. G., & Ayala-Zavala, J. F. (2013). Antioxidant enrichment and antimicrobial protection of fresh-cut mango applying bioactive extracts from their seeds by-products

    Google Scholar 

  • Wolfe, K. L., Kang, X., He, X., Dong, M., Zhang, Q., & Liu, R. H. (2008). Cellular antioxidant activity of common fruits. Journal of Agricultural and Food Chemistry, 56(18), 8418–8426.

    Article  CAS  PubMed  Google Scholar 

  • Wu, F., Liu, C., Zhang, L., Lu, Y., & Ma, Y. (2018). Comparative study of carbonized peach shell and carbonized apricot shell to improve the performance of lightweight concrete. Construction and Building Materials, 188, 758–771.

    Article  CAS  Google Scholar 

  • Xiong, X., Iris, K. M., Tsang, D. C., Bolan, N. S., Ok, Y. S., Igalavithana, A. D., Kirkham, M. B., Kim, K. H., & Vikrant, K. (2019). Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 375, 121983.

    Article  CAS  Google Scholar 

  • Xu, J., Yu, M., & Ma, R., & Shen, Z. (2013). CN102919972 (A) - portable labor-saving shell cracking and seed taking device for peach kernels. Retrieved from https://patents.google.com/patent/CN102919972A/en#citedby. Accessed 13 Feb 2013

  • Yuyama, L. K., Aguiar, J. P., Yuyama, K., Clement, C. R., Macedo, S. H., Fávaro, D. I., Afonso, C., Vasconcellos, M. B., Pimentel, S. A., Badolato, E. S., & Vannucchi, H. (2003). Chemical composition of the fruit mesocarp of three peach palm (Bactris gasipaes) populations grown in Central Amazonia, Brazil. International Journal of Food Sciences and Nutrition, 54(1), 49–56.

    CAS  PubMed  Google Scholar 

  • Zamuda, C., Mignone, B., Bilello, D., Hallett, K. C., Lee, C., Macknick, J., Newmark, R., & Steinberg, D. (2013). US energy sector vulnerabilities to climate change and extreme weather. Department of Energy.

    Google Scholar 

  • Zgoła-Grześkowiak, A., & Grześkowiak, T. (2021). Introduction: Bioactive compounds and elements in human nutrition. In Analytical methods in the determination of bioactive compounds and elements in food (pp. 1–9). Springer.

    Google Scholar 

  • Zhao, B., & Hall, C. A., III. (2008). Composition and antioxidant activity of raisin extracts obtained from various solvents. Food Chemistry, 108(2), 511–518.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imran, M. et al. (2022). Valorization of Peach (Prunus persica) Fruit Waste. In: Ramadan, M.F., Farag, M.A. (eds) Mediterranean Fruits Bio-wastes. Springer, Cham. https://doi.org/10.1007/978-3-030-84436-3_25

Download citation

Publish with us

Policies and ethics