Skip to main content

Date Palm (Phoenix dactylifera L.) Wastes Valorization: A Circular Economy Approach

  • Chapter
  • First Online:
Mediterranean Fruits Bio-wastes

Abstract

The date palm (Phoenix dactylifera L.) is the leading fruit crop in arid and semi-arid regions, particularly in West Asia and North Africa. In the Mediterranean basin and especially in Algeria (the fourth world date producer), this tree is one of the most important speculations, particularly at the socio-economic level, with a production of 30% of the total world palm trees. In addition to high nutritional and economic value, the date palm offers a wide range of by-products, varying from those used for artisanal constructions and biocomposites to animal feed, and recycled into organic soil amendments. The date fruit consumption gives a minor by-product: the date nuts with 11–18% of the total fruit weight, which is made up of carbohydrates, fiber, fat, ash, and proteins used for human and animal feeding. For hundreds of years, date palm nuts were used as food for the animal, especially camel and cow. This utilization is based on their lignocellulose composition dealing with a relatively high energetic value, biosynthesized by the ruminants’ digestive tract’s methanogen flora. With food processing development and the research/innovation of functional food, a new product, similar to coffee but free of caffeine, was designed made by processed then grounded date palm nuts, currently commercialized in Mediterranean countries. This represents another field of date palm waste (DPW) valorization in the food sector. Furthermore, the palm leaf is rich in lignocellulosic fibers, with relatively high equal rates of lignin (31%) and cellulose (30%). The maintenance of one palm date generates some 24 kg of waste yearly. Consequently, the DPW could be used as a source of energy and chemical product because of its high calorific value, remaining minerals issued from anoxic calcination, and valorized as biochar for poor agriculture soils. Moreover, this biowaste is recycled through the composting process after being formulated to lead to efficient compost, beneficial for agriculture. This soil amendment is achieved by co-composting the DPW with other wastes such as manure and animal excrements. This compost is mixed with a low rate of biochar in agriculture fields to improve soil fertility and increase plant yield. Such use and the soil spreading of fermented compost solution revealed an exceptional plant resistance against some phytopathogenic fungi such as Fusarium oxysporum. These waste valorization processes by recycling, according to a circular economy approach, are an interesting sustainable development solution, ensuring the DPW exploitation and preventing their polluting effect. After presenting the date palm field’s economic values and its biological aspects, this chapter will develop the different compounds issued from the DPW considering their valorization in the food domain, focusing first on their use for human and animal food, then in agriculture. This application will be based on the DPW mineral part from pyrolysis giving the biochar, then as compost, a soil amendment, and finally for biological treatment of some specific date palm diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Anaerobic digestion

DPW:

Date palm waste

MENA:

Middle East and North Africa

SOM:

Soil organic matter

References

  • Abbès, F., Bouaziz, M. A., Blecker, C., Masmoudi, M., Attia, H., & Besbes, S. (2011). Date syrup: Effect of hydrolytic enzymes (pectinase/cellulase) on physicochemical characteristics, sensory and functional properties. LWT - Food Science and Technology, 44, 1827–1834.

    Google Scholar 

  • Abdelaziz, S., Guessasma, S., Bouaziz, A., Hamzaoui, R., Beaugrand, J., & Souid, A. A. (2016). Date palm spikelet in mortar: Testing and modelling to reveal the mechanical performance. Construction and Building Materials, 124, 228–236.

    CAS  Google Scholar 

  • Abdel-Monaim, M. F. (2017). Enhancement the suppressive effect of date palm leaves compost (DPLC) against Faba Bean wilt with plant growth promoting rhizobacteria (PGPR). Egyptian Journal of Phytopathology, 45, 157–171.

    Google Scholar 

  • Abderrahim, L. (2020). Production du biogaz à partir des folioles et pétioles des palmiers dattiers (Phœnix dactylifera L.) variété H’mira: Etude comparative. Thesis report, University of Abdelhamid Ibn Badis-Mostaganem, Algeria, p. 82.

    Google Scholar 

  • Abderrahmane, A. (2019). Valeur nutritive des sous-produits du palmier dattier. Cas des folioles et des noyaux de trois variétés de datte. Thesis report, University of Blida Algeria, p 81.

    Google Scholar 

  • Abid, W., Ammar, E., Triki, M. A., Ben Abbou M., & Elhaji M. (2015). Gestion et valorisation des margines par co compostage avec les déchets verts et amendements des sols agricoles pour l’amélioration des rendements. Patent deposited at “Office Marocain de la Propriété Industrielle et Commerciale” (MA 20150445 A1), Morocco.

    Google Scholar 

  • Abid, W., Magdich, S., Ben Mahmoud, I., Medhioub, K., & Ammar, E. (2018). Date palm wastes co-composted product: An efficient substrate for tomato (Solanum lycopercicum L.) seedling production. Waste Biomass Valorisation, 9, 45–55.

    CAS  Google Scholar 

  • Abid, W., Mahmoud, I., Masmoudi, S., Triki, M. A., Mounier, S., & Ammar, E. (2020). Physico-chemical and spectroscopic quality assessment of compost issued from date palm waste valorization. Journal of Environmental Management, 264, 110492.

    CAS  PubMed  Google Scholar 

  • Ahmad, A., & Imtiaz, H. (2019). Chemical composition of date pits: Potential to extract and characterize the lipid fraction. Chapter 4. In M. Naushad & E. Lichtfouse (Eds.), Date palm for food, medicine and the environment (Sustainable Agriculture, Review 34) (pp. 55–78). Springer Nature.

    Google Scholar 

  • Ahmad, M., Ahmad, M., Usman, R. A., Al-Faraj, A. S., Abduljabbar, A., Ok, Y. S., & Al-Wabel, M. I. (2017). Date palm waste-derived biochar composites with silica and zeolite: Synthesis, characterization and implication for carbon stability and recalcitrant potential. Environmental Geochemistry and Health, 41, 1687–1704.

    PubMed  Google Scholar 

  • Ahmad, T., Danish, M., Rafatullah, M., Ghazali, A., Sulaiman, O., Hashim, R., & Ibrahim, M. N. M. (2012). The use of date palm as a potential adsorbent for wastewater treatment: A review. Environmental Science and Pollution Research, 19, 1464–1484.

    CAS  PubMed  Google Scholar 

  • Al-Farsi, K. A., Al-Habsi, N. A., & Al-Khusaibi, M. (2018). The potential antioxidant properties of date products: A concise update: Review article. The Canadian Journal of Clinical Nutrition, 6(2), 84–104.

    Google Scholar 

  • Al-Farsi, M. A., & Lee, C. Y. (2019). Usage of date (Phoenix dactylifera L.) seeds in human health and animal feed, Chapter 53. In M. Naushad & E. Lichtfouse (Eds.), Sustainable Agriculture, Review 34, Date palm for food, medicine and the environment (pp. 1–14). Springer Nature.

    Google Scholar 

  • Aljaloud, S., Colleran, H. L., & Ibrahim, S. A. (2020). Nutritional value of date fruits and potential use in nutritional bars for athletes. Food and Nutrition Sciences, 11, 463–480.

    CAS  Google Scholar 

  • Al-Juhaimi, F. Y., Hamad, S. H., Al-Ahaideb, I. S., Al-Otaibi, M. M., Ghafoor, K., Abbasi, T., & Abbasi, S. A. (2014). Biogas production through the anaerobic digestion of date palm tree wastes-process optimization. BioResources, 9(2), 3323–3333.

    Google Scholar 

  • Al-Khayri, J. M., & Naik, P. M. (2017). Review date palm micropropagation: Advances and applications. Science and Agrotechnology, 41(4), 347–358.

    CAS  Google Scholar 

  • Al-Mssallem, M. Q., Alqurashi, R. M., & Al-Khayri, J. M. (2019). Bioactive compounds of date palm (Phoenix dactylifera L.). In H. N. Murthy & V. A. Bapat (Eds.), Bioactive compounds in underutilized fruits and nuts, reference series in phytochemistry (pp. 1–15).

    Google Scholar 

  • Al-Oqla, F. M., & Sapuan, S. M. (2014). Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Clean Production, 66, 347–354.

    CAS  Google Scholar 

  • Al-Otaibi, H. M., Al-Suhaibani, A. S., & Alsoliman, H. A. (2016). Physical and rheological properties of asphalt modified with cellulose date palm fibers. World Academy of Science, Engineering and Technology. International Journal of Civil Enviromental Engineering, 10, 583–587.

    Google Scholar 

  • Al-Rifaie, W. N., & Al-Niami, M. (2016). Mechanical performance of date palm fibre-reinforced gypsums. Innovative Infrastructure Solutions, 1, 18.

    Google Scholar 

  • Al-Shahib, W., & Marshall, R. J. (2003). The fruit of the date palm: Its possible use as the best food for the future? International Journal of Food Sciences and Nutrition, 54(4), 247–259.

    PubMed  Google Scholar 

  • Al-Sulaiman, F. A. (2002). Mechanical properties of date palm fiber reinforced composites. Applied Composite Materials, 9, 369–377.

    CAS  Google Scholar 

  • Al-Wabel, M. I., Usman, A. R. A., Al-Farraj, A. S., Ok, Y. S., Abduljabbar, A., Al-Faraj, A. I., & Sallam, A. S. (2019). Erratum: Correction to: Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Environmental Geochemistry and Health, 41(4), 1705–1722.

    CAS  PubMed  Google Scholar 

  • Al-Yahyai, R., & Manickavasagan, A. (2012). An overview of date palm production. In A. Manickavasagan, M. Mohamed Essa, & E. Sukumar (Eds.), Dates production, processing, food, and medicinal values (pp. 3–11). CRS Press.

    Google Scholar 

  • Arab Agricultural Statistics Yearbook. (2016). Retrieved from http://www.aoad.org/statbook36

  • Arab Organization for Agricultural Development (AOAD). (2008). Arab agricultural statistics yearbook, 28, year- 2008 part III: Plant production, statistics division.

    Google Scholar 

  • Ashraf, Z., & Hamidi-Esfahani, Z. (2011). Date and date processing: A review. Food Reviews International, 27, 101–133.

    CAS  Google Scholar 

  • Association Française de Normalisation AFNOR. (2006). NF U 44-051. Amendements organiques - Dénominations spécifications et marquage.

    Google Scholar 

  • Ateeq, A., Sunil, S. D., Varun, S. K., & Santosh, M. K. (2013). Phenix dactylifera Linn. (Pind Kharjura): A review. International Journal of Research in Ayurveda and Pharmacy, 4(3), 447-451.

    Google Scholar 

  • Atriche, R., & Bourekoua, S. (2019). Valorisation des dattes sèche par la fabrication d’un sirop et leur caractérisation physico-chimiques et microbiologiques. Mémoire de Mastère. Univ. M.S. Ben Yahia, Jijel-Algeria.

    Google Scholar 

  • Awad, S., Zhou, Y., Katsou, E., Li, L., & Fan, M. (2020). A critical review on date palm tree (Phoenix dactylifera L.) fibres and their uses in bio-composites. Waste and Biomass Valorization, 12(6), 2853–2887.

    Google Scholar 

  • Ayad, A. A., Gad El-Rab, D. A., Ibrahim, S. A., & Williams, L. L. (2020). Nitrogen sources effect on Lactobacillus reuteri growth and performance cultivated in date palm (Phoenix dactylifera L.) by-products. Fermentation, 6(3), 64.

    CAS  Google Scholar 

  • Badawi, M. A. (2019). Production of biochar from date palm fronds and its effects on soil properties. Materials Research Proceedings, 11, 159–168.

    CAS  Google Scholar 

  • Ben Mbarek, H., Ben Mahmoud, I., Chaker, R., Rigane, H., Sameh, M., Arous, A., Soua, N., Khlif, M., & Kamel, G. (2019). Change of soil quality based on humic acid with date palm compost incorporation. International Journal of Recycling of Organic Waste in Agriculture, 8, 317–324.

    Google Scholar 

  • Benabderrahim, M. A., Elfalleh, W., Belayadi, H., & Haddad, M. (2018). Effect of date palm waste compost on forage alfalfa growth, yield, seed yield and minerals uptake. International Journal of Recycling of Organic Waste in Agriculture, 7, 1–9.

    Google Scholar 

  • Bendaly Labaied, M., Khiari, L., Gallichand, J., Kebede, F., Kadri, N., Ben Ammar, N., Ben Hmida, F., & Ben Mimoun, M. (2020). Nutrient diagnosis norms for date palm (Phoenix dactylifera L.) in Tunisian Oases. Agronomy, 10(6), 886.

    Google Scholar 

  • Bensidhom, G., Ben Hassen-Trabelsi, A., Sghairoun, M., Alper, K., & Trabelsi, I. (2018). Pyrolysis of Tunisian date palm residues for the production and characterization of bio-oil, bio-char and syngas. In A. Kallel et al. (Eds.), Recent advances in environmental science from the Euro-mediterranean and surrounding regions (Advances in Science, Technology & Innovation). https://doi.org/10.1007/978-3-319-70548-4_453

    Chapter  Google Scholar 

  • Besbes, S., Blecker, C., Deroanne, C., Lognay, G., Drira, N. E., & Attia, H. (2004). Date seed oil: Physico-chemical characteristics and oxidative stability during storage. Food Science and Technology International, 10, 333–338.

    CAS  Google Scholar 

  • Besbes, S., Drira, L., Blecker, C., Deroanne, C., & Attia, H. (2009). Adding value to hard date (Phoenix dactylifera L.): Compositional, functional and sensory characteristics of date jam. Food Chemistry, 112, 406–411.

    CAS  Google Scholar 

  • Boudebza, Y., & Ouchtati, N. (2018). Valorisation des noyaux de datte dans la fabrication d’un café décaféiné. Mémoire de Mastère. Univ. 8 mai 1945, Guelma, Algeria.

    Google Scholar 

  • Bourmaud, A., Dhakal, H., Habrant, A., Padovani, J., Siniscalco, D., Ramage, M. H., Beaugrand, J., & Shah, D. U. (2017). Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Composites Part A: Applied Science and Manufacturing, 103, 292–303.

    CAS  Google Scholar 

  • Chandrasekaran, M., & Bahkali, A. H. (2013). Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology - Review. Saudi Journal of Biological Sciences, 20, 105–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao, C. C. T., & Krueger, R. R. (2007). The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. Hortiscience, 42(5), 1077–1082.

    Google Scholar 

  • Chniti, S., Benrjeb, Z., Chaabene, H., Hassouna, M., Amrane, A., & Djelal, H. (2012). Influence de la nature de la source d’azote sur la production de bioéthanol à partir de déchets de dattes par Saccharomyces cerevisiae. 2ème Colloque International sur l’Énergie, Tozeur, Tunisie.

    Google Scholar 

  • Committee on Agriculture (COAG). (2020). Proposal for an international year of date palm, September–October 2020, Ed. FAO, pp. 1–7.

    Google Scholar 

  • Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., & Kaiser, M. (2020). Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems and Environment, 295, 106882.

    CAS  Google Scholar 

  • Daoud, A., Drira, M., Bakari, S., Hfaiedh, N., Mnafgui, K., Kadri, K., & Gharsallah, N. (2019). Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of date palm pollen (DPP) from two Tunisian cultivars. Arabian Journal of Chemistry, 12, 3075–3086.

    CAS  Google Scholar 

  • Dhakal, H., Bourmaud, A., Berzin, F., Almansour, F., Zhang, Z., Shah, D. U., & Beaugrand, J. (2018). Mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocomposites. Industrial Crops and Products, 126, 394–402.

    CAS  Google Scholar 

  • Dhaouadi, K., Ammar, H., Khouja, M., Sebei, H., & López, S. (2019). Chemical composition and antioxidant activity of date seeds from different Tunisian date palm cultivars. Journal of Food Science and Engineering, 9, 123–130.

    CAS  Google Scholar 

  • El Fels, L. (2014). Suivi physico-chimique, microbiologique et écotoxicologique du compostage de boues de STEP mélangées à des déchets de palmier: Validation de nouveaux indices de maturité. Thèse de l’Institut National Polytechnique de Toulouse, Université de Toulouse, p 75.

    Google Scholar 

  • El Sohaimy, S. A., Abdelwahab, A. E., & Brennan, C. S. (2015). Phenolic content, antioxidant and antimicrobial activities of Egyptian date palm fruits. Australian Journal of Basic and Applied Sciences, 9(1), 141–147.

    Google Scholar 

  • El-Gaid, M. A. A., & Nassef, D. M. T. (2012). Using date palm leaves compost (DPLC) for growing some vegetable crops transplants. Research Journal of Agriculture and Biological Sciences, 8, 63–67.

    Google Scholar 

  • El-Juhany, L. I. (2010). Degradation of date palm trees and date production in Arab countries: Causes and potential rehabilitation. Australian Journal of Basic and Applied Sciences, 4(8), 3998–4010.

    Google Scholar 

  • Elseify, L. A., Midani, M., Shihata, L. A., & El-Mously, H. (2019). Review on cellulosic fibers extracted from date palms (Phoenix Dactylifera L.) and their applications. Cellulose, 26, 2209–2232.

    CAS  Google Scholar 

  • European Environmental Agency. (2020). Bio-waste in Europe-turning challenges into opportunities. EEA Report, N° 04/2020.

    Google Scholar 

  • FAO Stat. (2010). Food and Agriculture Organization of the United Nations, Rome. Retrieved from http://faostat.fao.org

  • FAO: Food and Agriculture Organization of the United Nations. (2018). Crop statistics. FAO.

    Google Scholar 

  • Farooq, S. A., Khan, R. S., & Farook, T. T. (2012). Tissue culture studies in date palm. In A. Manickavasagan, M. Mohamed Essa, & E. Sukumar (Eds.), Dates production, processing, food, and medicinal values (pp. 13–23). CRS Press.

    Google Scholar 

  • Foster, W., Azimov, U., Gauthier-Maradei, P., Molano, L. C., Combrinck, M., Munoz, J., Esteves, J. J., & Patino, L. (2021). Waste-to-energy conversion technologies in the UK: Processes and barriers-a review. Renewable and Sustainable Energy Reviews, 135, 110226.

    CAS  Google Scholar 

  • Genin, D., Kadri, A., Khorchani, T., Sakkal, K., Belgacem, F., & Hamadi, M. (2004). Valorisation of date-palm by-products (DPBP) for livestock feeding in Southern Tunisia. I-Potentialities and traditional utilization. In H. Ben Salem, A. Nefzaoui, & P. Morand-Fehr (Eds.), Nutrition and feeding strategies of sheep and goats under harsh climates Zaragoza (CIHEAM Options Méditerranéennes: Série A. Séminaires Méditerranéens) (Vol. 59, pp. 221–226).

    Google Scholar 

  • Ghnimi, S., Umer, S., Karim, A., & Kamal-Eldin, A. (2017). Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS Journal, 6, 1–10.

    Google Scholar 

  • Ghori, W., Saba, N., Jawaid, M., & Asim, M. (2018). A review on date palm (Phoenix dactylifera) fibers and its polymer composites. IOP Conf. Series: Materials Science and Engineering, 368, 1–10.

    Google Scholar 

  • Giwa, A., Yusuf, A., Ajumobi, O., & Dzidzienyo, P. (2019). Pyrolysis of date palm waste to biochar using concentrated solar thermal energy: Economic and sustainability implications. Waste Management, 93, 14–22.

    CAS  PubMed  Google Scholar 

  • Gnanamangai, B. M., Saranya, S., Ponmurugan, P., Kavitha, S., Pitchaimuthu, S., & Divya, P. (2019). Analysis of antioxidants and nutritional assessment of date palm fruits. Chapter 2 in Mu. Naushad, Eric Lichtfouse, Date palm for food, medicine and the environment. Sustainable Agriculture, Review, 34.

    Google Scholar 

  • Gros-Balthazard, M., Newton, C., Ivorra, S., Tengberg, M., Pintaud, J. C., & Terral, J. F. (2013). Origines et domestication du palmier dattier (Phoenix dactylifera L.) - État de l’art et perspectives d’étude. Revue d’Ethnoécol, 4. https://doi.org/10.4000/ethnoecologie.1524

  • Guo, Q., Majeed, S., Xu, R., Zhang, K., Kakade, A., Khan, A., Hafeez, F. Y., Mao, C., Liu, P., & Li, X. (2019). Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. Journal of Environmental Management, 240, 266–272.

    CAS  PubMed  Google Scholar 

  • Hachicha, S., Cegarra, J., Sellami, F., Hachicha, R., Drira, N., Medhioub, K., & Ammar, E. (2009). Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. Journal of Hazardous Materials, 161, 1131–1139.

    CAS  PubMed  Google Scholar 

  • Haggag, W. M. (2020). Application of date-palm waste compost fortified with endophytic elicitors for management of potato fungal diseases. Plant Archives, 20, 9568–9574.

    Google Scholar 

  • Haider, M. S., Khan, I. A., Naqvi, S. A., Jaskani, M. J., Khan, R. W., Nafee, M., & Pasha, M. I. (2013). Fruit developmental stages effects on biochemical attributes in date palm. Pakistan Journal of Agricultural Sciences, 50(4), 577–583.

    Google Scholar 

  • Hamza, H., Jemni, M., Benabderrahim, M. A., Mrabet, A., Touil, S., Othmani, A., & Ben Salah, A. (2015). Date palm status and perspective in Tunisia, Chapter 6. In J. M. Al-Khayri et al. (Eds.), Date palm genetic resources and utilization: Volume 1: Africa and the Americas (pp. 193–221). Springer.

    Google Scholar 

  • Hassan, M. L., Bras, J., Hassan, E. A., Silard, C., & Mauret, E. (2014). Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Industrial Crops and Products, 55, 102–108.

    CAS  Google Scholar 

  • Hegazy, S., & Ahmed, K. (2015). Effect of date palm cultivar, particle size, panel density and hot water extraction on particleboards manufactured from date palm fronds. Agriculture, 5, 267–285.

    Google Scholar 

  • Hossain, M. Z., Waly, M., Singh, V., Sequeira, V., & Rahman, M. S. (2014). Chemical composition of date-pits and its potential for developing value-added product - a review. Polish Journal of Food and Nutritional Sciences, 64(4), 215–226.

    CAS  Google Scholar 

  • Hussain, M. I., Farooq, M., & Syed, Q. A. (2020). Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.) - a review. Food Bioscience, 34, 100509.

    CAS  Google Scholar 

  • Ibrahim, K. M. (2018). Integrating date palm biotechnology with community, a review. Iraqi Journal of Biotechnology, 17(2), 1–12.

    Google Scholar 

  • Idowu, A. T., Igiehon, O. O., Adekoya, A. E., & Idowu, S. (2020). Dates palm fruits: A review of their nutritional components, bioactivities and functional food applications. AIMS Agriculture and Food, 5(4), 734–755.

    Google Scholar 

  • Jemni, M., & Slah, M. (2006). Valorisation des éarts de triage de dattes. Cas d’application: Production biologique du vinaigre. Conférence: 13èmes Journées Scientifiques sur les Résultats de la Recherche Agricoles, Hammamet - Tunisia

    Google Scholar 

  • Jonoobi, M., Shafie, M., Shirmohammadli, Y., Ashori, A., Zarea-Hosseinabadi, H., & Mekonnen, T. (2019). A review on date palm tree: Properties, characterization and its potential applications. Journal of Renewable Materials, 7, 1056–1075.

    Google Scholar 

  • Karbout, N., Bol, R., Brahim, N., Moussa, M., & Bousnina, H. (2019). Applying biochar from date palm waste residues to improve the organic matter, nutrient status and water retention in sandy oasis soils. Journal of Research in Environmental and Earth Sciences, 07, 203–209.

    Google Scholar 

  • Kassem, A. H. (2011). Improving nutritional status, yield and fruit quality of date palm by nitrogen forms, potassium and sulfur fertilization. In “Proceedings of the First International Scientific Conference for the Development of Date Palm and Dates sector in the Arab World”, Arab Palm Conference 2011, National Centre for Agricultural Technologies Volume I, Riyadh.

    Google Scholar 

  • Kchaou, W., Abbès, F., Blecker, C., Attia, H., & Besbes, S. (2013). Effects of extraction solvents on phenolic contents and antioxidant activities of Tunisian date varieties (Phoenix dactylifera L.). Industrial Crops and Products, 45, 262–269.

    CAS  Google Scholar 

  • Kchaou, W., Abbès, F., Ben Mansour, R., Blecker, C., Attia, H., & Besbes, S. (2016). Phenolic profile, antibacterial and cytotoxic properties of second grade date extract from Tunisian cultivars (Phoenix dactylifera L.). Food Chemistry, 1994, 1084–1055.

    Google Scholar 

  • Khamassi, F. (2015). Rapport sur l’analyse de la chaîne de valeur du palmier dattier et ses dérivés, Ed. GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit), Tunis, p 47.

    Google Scholar 

  • Khan, M., & Prathapar, S. A. (2012). In book: Dates production, processing, food, and medicinal values. Chapter: Chapter 4. Water management in date palm groves. CRC Press.

    Google Scholar 

  • Li, C., Zhang, L., Gao, Y., & Li, A. (2018). Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb(II), Cu(II) and Cr(VI) removals. Waste Management, 79, 625–637.

    CAS  PubMed  Google Scholar 

  • Li, Y., Chen, Y., & Wu, J. (2019). Enhancement of methane production in anaerobic digestion process: A review. Applied Energy, 240, 120–137.

    CAS  Google Scholar 

  • Lo, S. L. Y., How, B. S., Leong, W. D., Teng, S. Y., Rhamdhani, M. A., & Sunarso, J. (2021). Techno-economic analysis for biomass supply chain: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 135, 110164.

    Google Scholar 

  • Makkawi, Y., El Sayed, Y., Salih, M., Nancarrow, P., Banks, S., & Bridgwater, T. (2019). Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor. Renewable Energy, 143(C), 719–730.

    CAS  Google Scholar 

  • Martis, R., Al-Othman, A., Tawalbeh, M., & Alkasrawi, M. (2020). Energy and economic analysis of date palm biomass feedstock for biofuel production in UAE: Pyrolysis, gasification and fermentation. Energies, 13, 5877.

    CAS  Google Scholar 

  • Masri, T., Ounis, H., Sedira, L., Kaci, A., & Benchabane, A. (2018). Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes. Construction and Building Materials, 164, 410–418.

    CAS  Google Scholar 

  • Matloob, M. H. (2014). Zahdi date vinegar: Production and characterization. American Journal of Food Technology, 9(5), 231–245.

    CAS  Google Scholar 

  • Michailos, S., Walker, M., Moody, A., Poggio, D., & Pourkashanian, M. (2020). Biomethane production using an integrated anaerobic digestion, gasification and CO2 biomethanation process in a real waste water treatment plant: A techno-economic assessment. Energy Conversion and Management, 209, 112663.

    CAS  Google Scholar 

  • Mrabet, A., Rodriguez-Arcos, R., Gulen-Bejarano, R., Chaira, N., Ferchichi, A., & Jimenez-Araujo, A. (2012). Dietary fiber from Tunisian common date cultivars (Phoenix dactylifera L.): Chemical composition, functional properties, and antioxidant capacity. Journal of Agricultural and Food Chemistry, 60(14), 3658–3664.

    CAS  PubMed  Google Scholar 

  • Munier, P. (1973). Le palmier dattier. Techniques agricoles et production tropicales (p. 217). Ed. Maisonneuve et Larose.

    Google Scholar 

  • Mustin, M. (1987). Le compost: Gestion de la matière organique (p. 957). Edition François Dubusc.

    Google Scholar 

  • Negash-Araya, M. (2018). A review of effective waste management from an EU, national, and local perspective and its influence: The management of biowaste and anaerobic digestion of municipal solid waste. Journal of Environmental Protection, 09(06), 652–670.

    Google Scholar 

  • Nehdi, I. A., Sbihi, H. M., Tan, C. P., Rashid, R., & Al-Resayes, S. I. (2018). Chemical composition of date palm (Phoenix dactylifera L.) seed oil from six Saudi Arabian cultivars. Journal of Food Science, 83(3), 624–630.

    CAS  PubMed  Google Scholar 

  • Ou-Zine, M., Bouhlal, Y., El Hilali, R., Achbani, E. L.-H., Haggoud, A., & Bouamri, R. (2020). Evaluation of compost quality and bioprotection potential against Fusarium wilt of date palm. Waste Management, 113, 12–19.

    Google Scholar 

  • Qasim, N., Shahid, M., Yousaf, F., Riaz, M., Anjum, F., Muhammad Adeel Faryad, M. A., & Shabbir, R. (2020). Therapeutic potential of selected varieties of Phoenix Dactylifera L. against microbial biofilm and free radical damage to DNA. Dose-Response, 18(4), 1–9.

    Google Scholar 

  • Sait, H. H., Hussain, A., Salema, A. A., & Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 118, 382–389.

    CAS  PubMed  Google Scholar 

  • Salomón-Torres, R., Ortiz-Uribe, N., Valdez-Salas, B., Rosas-González, N., García-González, C., Chávez, D., Córdova-Guerrero, I., Díaz-Rubio, L., Haro-Vázquez, M. P., Mijangos-Montiel, J. L., Morales-Maza, A., Mahadevan, P., & Krueger, R. (2019). Nutritional assessment, phytochemical composition and antioxidant analysis of the pulp and seed of medjool date grown in Mexico. PeerJ, 7, e6821. https://doi.org/10.7717/peerj.6821

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafiq, M., Alazba, A. A., & Amin, M. T. (2019). Synthesis, characterization, and application of date palm leaf waste-derived biochar to remove cadmium and hazardous cationic dyes from synthetic wastewater. Arabian Journal of Geosciences, 12, 63.

    Google Scholar 

  • Sharma, G., Sharma, V., & Mishra, T. (2019). A systematic review of the characteristics, phytonutritive, and therapeutic potential of the date palm fruit (Phoenix dactylifera). Journal of Biotechnology, Computational Biology and Bionanotechnology, 10(2), 121–131.

    Google Scholar 

  • Shi, L.-E., Zheng, W., Aleid, S. M., Tang, Z.-X., (2015). Date pits: Chemical composition, nutritional and medicinal values, utilization. Crop Science, 54, 1322–1330.

    Google Scholar 

  • Shirani, M., & Mohammadi-Ghehsareh, A. (2014). The effect of composted and un-composted date-palm waste as a media on some microelements of tomato fruit. Research Journal of Recent Sciences, 3, 45–49.

    Google Scholar 

  • Siddiqi, S. A., Rahman, S., Khan, M. M., Rafiq, S., Inayat, A., Khurram, M. S., Seerangurayar, T., & Jamil, F. (2020). Potential of dates (Phoenix dactylifera L.) as natural antioxidant source and functional food for healthy diet. Science of the Total Environment, 748, 141234.

    CAS  Google Scholar 

  • Sidhu, J. S. (2006). Date fruits production and processing. In Y. H. Hui (Ed.), Handbook of fruit and fruit processing (pp. 390–411). Blackwell.

    Google Scholar 

  • Souissi, M., Guesmi, A., & Moussa, A. (2018). Valorization of natural dye extracted from date palm pits (Phoenix dactylifera) for dyeing of cotton fabric. Part 1: Optimization of extraction process using Taguchi design. Journal of Cleaner Production, 202, 1054–1055.

    Google Scholar 

  • Tahir, A. H. F., Al-Obaidy, A. H. M. J., & Mohammed, F. H. (2020). Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A review. IOP Conference Series: Materials Science and Engineering, 737, 012171.

    CAS  Google Scholar 

  • Tang, Z.-X., Shi, L.-E., & Aleid, S. M. (2013). Date fruit: Chemical composition, nutritional and medicinal values, products. Journal of the Science of Food and Agriculture, 93(10), 2351–2361.

    CAS  PubMed  Google Scholar 

  • Tioua, T., Kriker, A., Barluenga, G., & Palomar, I. (2017). Influence of date palm fiber and shrinkage reducing admixture on selfcompacting concrete performance at early age in hot-dry environment. Construction and Building Materials, 154, 721–733.

    Google Scholar 

  • Traversi, D., Romanazzi, V., Degan, R., Lorenzi, E., Carraro, E., & Gilli, G. (2015). Microbial-chemical indicator for anaerobic digester performance assessment in full-scale wastewater treatment plants for biogas production. Bioresource Technology, 186, 179–191.

    CAS  PubMed  Google Scholar 

  • Usman, A. R. A., Abduljabbar, A., Vithanage, M., Oke, Y. S., Ahmad, M., Ahmad, M., Elfaki, J., Abdulazeem, S. S., & Al-Wabel, M. I. (2015). Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis, 115, 392–400.

    CAS  Google Scholar 

  • Waqas, M., Nizami, A. S., Aburiazaiza, A. S., Barakat, M. A., Rashid, M. I., & Ismail, I. M. I. (2018). Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia. Journal of Cleaner Production, 176, 426–438.

    CAS  Google Scholar 

  • Yakubu, M., Hayatu, M., Ubara, U. E., Erumwenbibi, A. I., Hamza, A. M., Shehu, A. S., & Ibrahim, Z. (2020). Evaluation of the effects of date palm waste compost on growth and physiology of date palm (Phoenix dactylifera L.) seedlings. Dutse Journal of Pure and Applied Sciences, 6, 37–46.

    Google Scholar 

  • Yanagi, Y., Nishinura, S., & Shindo, H. (2016). Fire-induced formation and biodegradation of humic substances in Andosols of Japan. Geoderma Regional, 7, 177–186.

    Google Scholar 

  • Zafran, S. (2020). Date palm as biomass resource. Bioenergy Consult. Retrieved from https://www.bioenergyconsult.com

  • Zaid, A., & Wet, P. F. (2002). Chapter V: Date palm propagation. In date palm cultivation. FAO plant production and protection paper, 156, Rev. 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abid, W., Ammar, E. (2022). Date Palm (Phoenix dactylifera L.) Wastes Valorization: A Circular Economy Approach. In: Ramadan, M.F., Farag, M.A. (eds) Mediterranean Fruits Bio-wastes. Springer, Cham. https://doi.org/10.1007/978-3-030-84436-3_17

Download citation

Publish with us

Policies and ethics