Skip to main content

Inverse Dynamic Seismic Problem Solution in the HRS-Geo Technology

  • Chapter
  • First Online:
Oil and Gas Reservoir Prospecting and Exploration

Abstract

The main features of the method developed by the authors and the methodology of its application, made in the form of the HRS-Geo technology, are considered. The solution of the IDSP is found by the optimization method, which consists of the selection of the AI and RC models to a given structure of the wave field (WF) according to the known formulas for solving the direct problem for calculating the seismic wave field. In this case, the convolutional model algorithm is used, in which it is possible to take into account the noise level, the residual background of multiple waves, and the regularization factor. In general, the study of real geological environments is focused on the use of the seismic record dynamic features and the implementation of its maximum possible resolution, namely, the construction of 2D sections and 3D cubes of effective acoustic impedance (AI) and reflection coefficients (RC), which have a vertical resolution equal to the sampling step of the seismic record in time. One of the main advantages of the technology over modern inversion methods is that it is not tied to borehole data. The detail of the section study, i.e., the vertical resolution of the inversion results, in the complete absence of borehole data, is the sampling step of the seismic survey (along the time 1 or 2 ms, which corresponds to a depth of 3–6 m). A general scheme for solving the inverse dynamic problem of seismics and interpreting the results in the HRS-Geo technology is presented. The assessment of the chosen approach correctness to the solution of inverse dynamic seismic problem (IDSP) is given, and the reliability and accuracy of the acoustic model restoration results are determined. Examples of solving the inverse dynamic problem of seismics on test and real materials are given. It is shown which factors have a significant impact on the reconstruction results of a detailed thin-layer medium model and the methods of their computing. A new type of noises (wave interference) in the structure of the seismic wave field, which limits the maximum detail and information content of the studied environment, is introduced in the solution of thin-layer geological problems using the HRS-Geo technology. The chapter considers the features of seismic data preprocessing using the HRS-Geo technology, which ensures the maximum possible preservation of primary seismic waves against the background of various non-useful regular waves and random noises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trofimov, V., Khaziev, F., & Trofimova, A. (2018). Tekhnologiya VRS-Geo. Izucheniye nefteperspektivnykh obyektov metodom vysokorazreshayushchey seysmiki (HRS-Geo technology. Study of oil-prospective objects by the method of high-resolution seismic). Oil & Gas Journal Russia, 1–2(123), 28–35.

    Google Scholar 

  2. Khaziev, F. F., & Trofimov, V. L. (2003). Model’nyye issledovaniya rezul’tatov resheniya obratnoy dinamicheskoy zadachi seysmiki (Model studies of the solving inverse dynamic seismic problem results). Spetsial’nyy vypusk Geofizika: Tekhnologii seysmorazvedki-I I (Geophysics, special edition of “Seismic Technologies”). pp. 27–37.

    Google Scholar 

  3. Khaziev, F. F., Trofimov, V. L., & Milashin, V. A. (2011). Otsenka vklada elementarnykh granits i tolshch v seysmicheskoye volnovoye pole dlya mnogosloynykh pogloshchayushchikh sred (Assessment of the elementary boundaries and strata contribution to the seismic wave field in multilayer absorbing media). Tekhnologii seysmorazvedki (Seismic Technologies), 2, 86–96.

    Google Scholar 

  4. Trofimov, V. L., Milashin, V. A., Khaziev, F. F. et al. (2004). Resheniye zadach neftyanoy geologii v razlichnykh rayonakh Zapadnoy Sibiri metodami vysokorazreshayushchey seysmiki (Solving the problems of oil geology in various regions of Western Siberia by high-resolution seismic methods): VII Scientific-Practical Conference “Ways of realizing the oil and gas potential of the Khanty-Mansiysk Autonomous Okrug”. pp. 26–45.

    Google Scholar 

  5. Trofimov, V. L., Milashin, V. A., Kachkin, A. A., Timonin, A. B., Khaziev, F. F., & Mal’tsev, G. A. (2005). Formirovaniye tonkosloistoy geologicheskoy modeli yurskikh otlozheniy na Zapadno-Tugrovskom uchastke KHMAO metodami vysokorazreshayushchey seysmiki (Formation of a thin-layered geological model of Jurassic sediments in the West Tugrovsk area of the KMAO by high-resolution seismic methods). Geofizika: Tekhnologii seysmorazvedki (Geophysics: Seismic Technologies), 2, 25–36.

    Google Scholar 

  6. Trofimov, V. L., Milashin, V. A., Khaziev, F. F., et al. (2009). Spetsial’naya obrabotka i interpretatsiya dannykh seysmicheskikh nablyudeniy v slozhnykh geologicheskikh usloviyakh metodom vyokorazreshayushchey seysmiki (Special processing and interpretation of seismic observation data in difficult geological conditions by the method of high-resolution seismics). Tekhnologii seysmorazvedki (Seismic Technologies), 3, 36–50.

    Google Scholar 

  7. Glebov, A. F. (2006). Geologo-matematicheskoye modelirovaniye neftyanogo rezervuara: ot seysmiki do geoflyuidodinamiki (Geological and mathematical modeling of an oil reservoir: from seismic to geofluidodynamics). (p. 344). Nauchnyy, M..

    Google Scholar 

  8. Kaufman, A. A., & Levshin, A. L. (2006). Vvedeniye v teoriyu geofizicheskikh metodov. Chast’ 5. Akusticheskiye i uprugiye volnovyye polya v geofizike (Introduction to the theory of geophysical methods. Part 5. Acoustic and elastic wave fields in geophysics) (p. 663). Nedra.

    Google Scholar 

  9. Kozlov Ye, A. (2006). Modeli sredy v razvedochnoy seysmologii (Models of medium in exploration seismology). Tver (p. 480). GERS.

    Google Scholar 

  10. Petrashen, G. I. (1978). Osnovy matematicheskoy teorii rasprostraneniya uprugikh voln (Mathematical theory foundation of elastic wave propagation). Book: “Voprosy dinamicheskoy teorii rasprostraneniya seysmicheskikh voln” (“Dynamic theory questions of seismic wave propagation”). Release XVIII, L., Nauka. p. 248.

    Google Scholar 

  11. Petrashen, G. I. (1980). Rasprostraneniye voln v anizotropnykh uprugikh sredakh (Wave propagation in anisotropic elastic media). L., Nauka. p. 280.

    Google Scholar 

  12. Khaziev, F. F., Trofimov, V. L., & Shkol’nik, S. A. (2014). Kolichestvennaya otsenka vklada geologicheskikh pokazateley v interferentsionnuyu seysmicheskuyu zapis’ i yeye psevdoakusticheskiye preobrazovaniya (Quantitative assessment of the geological indicators contribution to the interference seismic record and its pseudoacoustic transformations). Tekhnologii seysmorazvedki (Seismic Technologies), 2, 70–83.

    Google Scholar 

  13. Vychislitel’nyye matematika i tekhnika v razvedochnoy geofizike. (1990). (Computational mathematics and technique in exploration geophysics). Spravochnik geofizika. Pod red. V.I.Dmitriyeva (Geophysicist handbook edited by V.I.Dmitriyeva). Second edition. M., Nedra. p. 498.

    Google Scholar 

  14. Romanov, V. G. (1984). Obratnyye zadachi matematicheskoy fiziki (Inverse problems of mathematical physics). M., Nauka. p. 264.

    Google Scholar 

  15. Tikhonov, A. N., & Arsenin Ya, V. (1974). Metody resheniya nekorrektnykh zadach (Methods for solving incorrect problems). M. p. 223.

    Google Scholar 

  16. Yagola, A. G. (2014). Obratnyye zadachi i metody ikh resheniya (Inverse problems and methods for their solution). Prilozheniya k geofizike (Elektronnyy rakurs) Yagola A.G., Van Yanfey Stepanova I.E., Titarenko V.N. 2BINOM. Laboratoriya znaniy (Knowledge laboratory), p. 216.

    Google Scholar 

  17. Yanovskaya, T. B., Prokhorova, L. N. (2004). Obratnyye zadachi geofiziki (Inverse problems of geophysics). Uchebnoye posobiye (Tutorial). Izd. S.-Peterburgskogo universiteta. p. 214.

    Google Scholar 

  18. Trifonov A.G. Postanovka zadachi optimizatsii i chislennyye metody yeye resheniya (Statement of the optimization problem and numerical methods for its solution). Matematika\OptimizationToolbox. Retrieved on December 11 from http://matlab.exponenta.ru/optimiz/book_2/index.php

    Google Scholar 

  19. Aoki, M. (1977). Vvedeniye v metody optimizatsii (Introduction to optimization methods). M., Nauka. p. 344.

    Google Scholar 

  20. Trifonov, A. G. 2012. Mnogokriterial’naya optimizatsiya (Multi-criteria optimization). Optimization Toolbox 2.2. Rukovodstvo pol’zovatelya (User Guide). Retrieved on December 11 from http://matlab.exponenta.ru/optimiz/book_1/16.php

    Google Scholar 

  21. Gembicki, F. W. (1974). Vector Optimization for Control with Performance and Parameter Sensitivity Indices. Ph.D. Thesis, Case Western Reserve University.

    Google Scholar 

  22. Gogonenkov, G. N. (1987). Izucheniye detal’nogo stroyeniya osadochnykh tolshch seysmorazvedkoy (The detailed sedimentary strata structure study by seismic exploration) (p. 221). Nedra.

    Google Scholar 

  23. Kanasevich, E. R. (1985). Analiz vremennykh posledovatel’nostey v geofizike (Analysis of time sequences in geophysics) (p. 300). Nedra.

    Google Scholar 

  24. Polshkov, M. K., Kozlov Ye, A., & Meshbey, V. I. (1984). Sistemy registratsii i obrabotki dannykh seysmorazvedki (Seismic data registration and processing systems). M., Nedra. p. 381.

    Google Scholar 

  25. Trofimov, V. L., Khaziev, F. F. (1991). Modelirovaniye volnovykh poley dlya mnogosloynykh pogloshchayushchikh sred s otsenkoy vklada elementarnykh granits i tolshch (Modeling of wave fields for multilayer absorbing media with an assessment of the contribution of elementary boundaries and strata). Study of the Pripyat trough deep structure by methods of exploration geophysics: collection of BelNIGRI scientific papers. pp. 3–14.

    Google Scholar 

  26. Barkov Yu, A., Shteyn Ya, I., Yakovlev, I. V., & Grechishnikova, T. A. (2008). Pereobrabotka dannykh 3D-seysmorazvedki dlya povysheniya nadozhnosti interpretatsii i vyyavleniya osobennostey geologicheskogo stroyeniya (Re-processing of 3D seismic data to improve the reliability of interpretation and identification of the geological structure features). Tekhnologii seysmorazvedki (Seismic Technologies), 2, 38–42.

    Google Scholar 

  27. P’yankov, A. A. (2013). Otsenka razreshayushchey sposobnosti seysmicheskikh izobrazheniy na osnove primeneniya novogo atributa (Estimation of the seismic images resolution based on the application of a new attribute). Sovremennyye problemy nauki i obrazovaniya (Modern problems of science and education). № 6. Retrieved on July 22, 2018 from http://www.science-education.ru/ru/article/view?id=11280

    Google Scholar 

  28. Sheriff, R., & Geldart, L. (1987). Seysmorazvedka (Seismic exploration). Tom 1 (448 pages), Tom 2 (400 pages). M., Mir.

    Google Scholar 

  29. Cordsen, A., Galbraith, M., & Peirce, J.. Planning Land 3-D Seismic Surveys. Geophysical Developments № 9, SEG, ISBN: 978–1–56, 080-089-7.

    Google Scholar 

  30. Denham, L. R. (1980). What is horizontal resolution? Presented at the Ann. Mtg., Can. Soc. Expl. Geophys.

    Google Scholar 

  31. Trofimov, V. L., Khaziev, F. F., & Milashin, V. A. (2012). Dinamicheskiye kharakteristiki otrazhennykh voln s uchetom vklada elementarnykh granits i tolshch (Dynamic characteristics of reflected waves taking into account the contribution of elementary boundaries and strata). Tekhnologii seysmorazvedki (Seismic Technologies), 2, 12–24.

    Google Scholar 

  32. Claerbout, J. F. (1985). Imaging the earth’s interior (Vol. 18). Blackwell Publications.

    Google Scholar 

  33. Ebrom, D., Li, X., McDonald, J., & Lu, L. (1995). Bin spacing in land 3-D seismic surveys and horizontal resolution in time slices. The Leading Edge, 14. pp 37–40.

    Google Scholar 

  34. Sil’via, M. T., & Robinson, E. A. (1983) Obratnaya fil’tratsiya geofizicheskikh vremennykh ryadov pri razvedke na neft’ i gaz (Inverse filtering of geophysical time series in oil and gas exploration). M., Nedra. p. 247.

    Google Scholar 

  35. Belousov, A. V. (2011). Standartnyye otsenki kachestva polevogo seysmicheskogo materiala (Standard assessments of the field seismic material quality). Pribory i sistemy razvedochnoy geofiziki (Devices and systems of exploration geophysics). № 3. pp. 31–36.

    Google Scholar 

  36. Trofimov, V. L., Khaziev, F. F., Milashin, V. A., et al. (2007). Avtomatizirovannaya obrabotka i interpretatsiya dannykh GIS dlya obnaruzheniya nefteperspektivnykh obyektov metodami vysokorazreshayushchey seysmiki (Automated processing and interpretation of well logging data for the detection of oil-prospective objects by high-resolution seismic methods). Tekhnologii seysmorazvedki (Seismic Technologies), 2, 54–66.

    Google Scholar 

  37. Trofimov, V. L., & Khaziev, F. F. (2011). Izucheniye vliyaniya sostava i svoystv porod na geologo-geofizicheskiye parametry nefteperspektivnykh otlozheniy (Study of the influence of the composition and properties of rocks on the geological and geophysical parameters of oil-promising deposits). Tekhnologii seysmorazvedki (Seismic Technologies), 1, 22–33.

    Google Scholar 

  38. Seysmorazvedka: Spravochnik geofizika. (1990). (Seismic exploration: Geophysics handbook). Tom 2 edited by Nomokanov. M., Nedra. p. 400.

    Google Scholar 

  39. Akimov, P. S., Yevstratov, F. F., Zakharov, S. I., et al. (1989). Obnaruzheniye radiosignalov (Detection of radio signals). In A. A. Kolosov (Ed.), Radio i svyaz’ (Radio and communications) (p. 288).

    Google Scholar 

  40. Milashin, V. A., Trofimov, V. L., & Khaziev, F. F. (2004). Vydeleniye slabykh signalov metodom seysmicheskoy inversii (Weak signals detection by the method of seismic inversion). VII Scientific- Practical Conference “Ways of realizing the oil and gas potential of the Khanty-Mansiysk Autonomous Okrug”. t. 2. pp. 295–307.

    Google Scholar 

  41. Berezkin, V. M., Kirichek, M. A., & Kunarev A.A. (1978). Primeneniye geofizicheskikh metodov razvedki dlya pryamykh poiskov mestorozhdeniy nefti i gaza (Application of geophysical exploration methods for direct exploration of oil and gas fields). Nedra. p. 224.

    Google Scholar 

  42. Kuznetsov, O. L., Petukhov, A. V., Zor’kin, L. M., Zubayrayev, S. L., Kirichek, M. A., & Popsuy-Shapko, G. P. (1986). Fiziko-khimicheskiye osnovy pryamykh poiskov zalezhey nefti i gaza (Physical and chemical foundations of direct prospecting for oil and gas deposits) (p. 336). Nedra.

    Google Scholar 

  43. Mandel’baum, M. M., Puzyrev, N. N., Rykhlinskiy, N. I., Surkov, V. S., & Trofimuk, A. A. (1988). Pryamoy poisk uglevodorodov geofizicheskimi metodami (Direct search for hydrocarbons by geophysical methods). Akademicheskiye chteniya AN SSSR (Academic readings of the USSR Academy of Sciences). M., Nauka. p. 160.

    Google Scholar 

  44. Trofimov, V. L., & Khaziev, F. F. (2002). Kolichestvennyy prognoz veshchestvennogo sostava i neftegazonosnosti poristykh fatsiy metodami vysokorazreshayushchey seysmiki (Quantitative prediction of material composition and oil and gas content of porous facies using high-resolution seismic methods): Geofizika: Tekhnologii seysmorazvedki – 1 (Geophysics, special edition of “Seismic Technologies”). pp. 130–141.

    Google Scholar 

  45. Khaziev, F. F., Trofimov, V. L., & Milashin, V. A. (2008). Opredeleniye geologo-geofizicheskikh parametrov real’noy sredy metodom vysokorazreshayushchey seysmiki (Determination of geological and geophysical parameters of the real medium by the high-resolution seismic method). Tekhnologii seysmorazvedki (Seismic Technologies), 2, 25–30.

    Google Scholar 

  46. Metodicheskiye rekomendatsii po ispol’zovaniyu dannykh seysmorazvedki dlya podscheta zapasov uglevodorodov v usloviyakh karbonatnykh porod s poristost’yu treshchinno-kavernoznogo tipa. (2010). (Methodological recommendations on the use of seismic data for calculating hydrocarbon reserves in carbonate rocks with fractured-cavernous porosity). Edited by V.B.Levyant. M., OAO «TSGE».

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trofimov, V.L., Khaziev, F.F., Trofimova, A.V. (2022). Inverse Dynamic Seismic Problem Solution in the HRS-Geo Technology. In: Oil and Gas Reservoir Prospecting and Exploration. Springer, Cham. https://doi.org/10.1007/978-3-030-84389-2_4

Download citation

Publish with us

Policies and ethics