Aarts, J., van Halteren, H., & Oostdijk, N. (1998). The linguistic annotation of corpora: The TOSCA analysis system. International Journal of Corpus Linguistics, 3(2), 189–210.
CrossRef
Google Scholar
Ainsworth, J., & Juola, P. (2019). Who wrote this?: Modern forensic authorship analysis as a model for valid forensic science. Washington University Law Review, 9(5), 1161–1189.
Google Scholar
Baayen, F. H., van Halteren, H., & Tweedie, F. (1996). Outside the cave of shadows: Using syntactic annotation to enhance authorship attribution. Literary and Linguistic Computing, 11(3), 121–132.
CrossRef
Google Scholar
Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. O’Reilly Media Inc..
Google Scholar
Benedetto, D., Caglioti, E., & Loreto, V. (2002). Language trees and zipping. Physical Review Letters, 88(4), 048702.
CrossRef
Google Scholar
BNC Consortium. (2007). The British national corpus, v3 (BNC XML Edition). Distributed by Bodleian Libraries, University of Oxford, on behalf of the BNC Consortium.
Google Scholar
Bönninghoff, B., Nickel, R. M., Zeiler, S., & Kolossa, D. (2019). Similarity Learning for Authorship Verification in Social Media. In 2019 IEEE International Conference on Acoustics, Speech and Signal Processing: Proceedings: May 12-17, 2019, Brighton Conference Centre, Brighton, United Kingdom. IEEE. 2457-2461. Retrieved from https://doi.org/10.1109/ICASSP.2019.8683405
Bönninghoff, B., Rupp, J., Nickel, R.M., & Kolossa, D. (2020). Deep Bayes factor scoring for authorship verification. Notebook for PAN at CLEF 2020. In CLEF 2020 Labs and Workshops, Notebook Papers. CEUR-WS.org. Retrieved from http://ceur-ws.org/Vol-2696/paper_151.pdf
Chang, C.-C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(27), 1–27.
CrossRef
Google Scholar
Covington, M. A., & McFall, J. D. (2010). Cutting the Gordian knot: The Moving-average type–token ratio (MATTR). Journal of Quantitative Linguistics, 17(2), 94–100.
CrossRef
Google Scholar
Daelemans, W., Van Den Bosch, A., & Zavrel, J. (1999). Forgetting exceptions is harmful in language learning. Machine Learning, 34(1-3), 11–41.
CrossRef
Google Scholar
Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing.
Google Scholar
Juola, P. (2008). Authorship attribution. Foundations and Trends® in Information Retrieval, 1(3), 233–334.
CrossRef
Google Scholar
Koppel, M., Akiva, N., & Dagan, I. (2006). Feature instability as a criterion for selecting potential style markers. Journal of the American Society for Information Science and Technology, 57(11), 1519–1525.
CrossRef
Google Scholar
Lutosławski, W. (1890). Principes de stylométrie. Revue des études grecques, 41, 61–81.
Google Scholar
Ma, W., Liu, R., Wang, L., & Vosoughi, S. (2020). Towards improved model design for authorship identification: A survey on writing style understanding. Retrieved from arXiv:2009.14445
Google Scholar
Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., & McClosky, D. (2014). The Stanford CoreNLP natural language processing toolkit. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Association for Computational Linguistics. 55-60. Retrieved from https://www.aclweb.org/anthology/P14-5010
Mosteller, F., & Wallace, D. L. (1964). Inference and disputed authorship: The Federalist. Addison-Wesley.
Google Scholar
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.). (2019). Advances in Neural Information Processing Systems, 32, 8024-8035.
Google Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Google Scholar
Stamatatos, E. (2009). A survey of modern authorship attribution methods. Journal of the American Society for Information Science and Technology, 60(3), 538–556.
CrossRef
Google Scholar
Tweedie, F., & Baayen, R. H. (1998). How variable may a constant be? Measures of lexical richness in perspective. Computers and the Humanities, 32, 323–352.
CrossRef
Google Scholar
Valla, L. (1439-1440). De falso credita et ementita Constantini Donatione declamatio. Retrieved from https://history.hanover.edu/texts/vallatc.html
van Halteren, H. (2019). Benchmarking author recognition systems for forensic application. Linguistic Evidence in Security, Law and Intelligence (LESLI) Journal, 3. Retrieved from http://www.lesli-journal.org/ojs/index.php/lesli/article/view/20
van Halteren, H., Baayen, R. H., Tweedie, F. J., Haverkort, M., & Neijt, A. (2005). New machine learning methods demonstrate the existence of a human stylome. Journal of Quantitative Linguistics, 12(1), 65–77.
CrossRef
Google Scholar
van Halteren, H., van Hout, R., & Roumans, R. (2018). Tweet geography. Tweet based mapping of dialect features in Dutch Limburg. Computational Linguistics in the Netherlands Journal, 8, 138–162. Retrieved from https://clinjournal.org/clinj/article/view/84
Google Scholar