Skip to main content

Notes on Point-Free Topology

  • Chapter
  • First Online:
New Perspectives in Algebra, Topology and Categories

Part of the book series: Coimbra Mathematical Texts ((CMT,volume 1))

Abstract

Point-free topology is the study of the category of locales and localic maps and its dual category of frames and frame homomorphisms. These notes cover the topics presented by the first author in his course on Frames and Locales at the Summer School in Algebra and Topology. We give an overview of the basic ideas and motivation for point-free topology, explaining the similarities and dissimilarities with the classical setting and stressing some of the new features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact this property is characteristic for the representation of continuous maps: if the spaces are sober, which is a very general condition (see 3.4 below), each frame homomorphism \(h:\Omega (Y)\rightarrow \Omega (X)\) is an \(\Omega (f)\) for some continuous f [49].

  2. 2.

    That is, the opens \(U=\mathrm{int}\,\overline{U}\), “open sets without lesions”, the open sets one thinks about first.

  3. 3.

    This proof shows indeed more: L/R is a sublocale of L, see 5.4 below.

  4. 4.

    Nuclei in L are in a one-one correspondence with onto frame homomorphisms with domain L hence constitute an alternative representation for sublocales in L [44].

  5. 5.

    The joins \(\mathop {\textstyle \bigsqcup }\) in S are given by \(\mathop {\textstyle \bigsqcup }s_i=\nu _S(\mathop {\textstyle \bigvee }s_i)\) (if \(t\in S\) and \(t\ge s_i\) for all i then \(t\ge \mathop {\textstyle \bigvee }s_i\) and \(t=\nu _S(t)\ge \nu _S(\mathop {\textstyle \bigvee }s_i)\)).

  6. 6.

    The reader might have expected for the definition of \(\mathfrak {o}(a)\). This subset of L is not a sublocale, but the intuition is not wide from the target: is isomorphic to \(\mathfrak o(a)\) which is the image of the localic map adjoint to the map .

  7. 7.

    The importance of this condition is comparable with that of sobriety. Note that in a way these two conditions are dual to each other: while sobriety requires that we cannot add a point to X without changing \(\Omega (X)\), \(T_D\) says that we cannot subtract a point.

  8. 8.

    More precisely: a map is localic iff each closed sublocale has a closed preimage whose complement is contained in the preimage of the complement of the original sublocale, and the least subocales are preserved.

  9. 9.

    With the Boolean Ultrafilter Theorem; the compactness of products for general spaces is equivalent with the full Axiom of Choice. Even the theorem for general frames is choice-free, but this is technically much more involved [5, 27, 37].

References

  1. Aull, C.E., Thron, W.J.: Separation axioms between \(T_0\) and \(T_1\). Indag. Math. 24, 26–37 (1963)

    MATH  Google Scholar 

  2. Baboolal, D., Picado, J., Pillay, P., Pultr, A.: Hewitt’s irresolvability and induced sublocales in spatial frames. Quaest. Math. 43, 1601–1612 (2020)

    Article  MathSciNet  Google Scholar 

  3. Banaschewski, B.: Untersuchen uber Filterräume. Doctoral dissertation, Universität Hamburg (1953)

    Google Scholar 

  4. Banaschewski, B.: The duality of distributive continuous lattices. Can. J. Math. 32, 385–394 (1980)

    Article  MathSciNet  Google Scholar 

  5. Banaschewski, B.: Another look at the localic Tychonoff theorem. Comment. Math. Univ. Carolinae 29, 647–656 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Banaschewski, B.: The Real Numbers in Pointfree Topology. Textos de Matemática, vol. 12, University of Coimbra (1997)

    Google Scholar 

  7. Banaschewski, B., Hong, H.S., Pultr, A.: On the completion of nearness frames. Quaest. Math. 21, 19–37 (1998)

    Article  MathSciNet  Google Scholar 

  8. Banaschewski, B., Mulvey, C.J.: Stone-Čech compactification of locales I. Houston J. Math. 6, 301–312 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Banaschewski, B., Mulvey, C.J.: Stone-Čech compactification of locales II. J. Pure Appl. Algebra 33, 107–122 (1984)

    Article  MathSciNet  Google Scholar 

  10. Banaschewski, B., Pultr, A.: Paracompactness revisited. Appl. Categ. Struct. 1, 181–190 (1993)

    Article  MathSciNet  Google Scholar 

  11. Banaschewski, B., Pultr, A.: Cauchy points of uniform and nearness frames. Quaest. Math. 19, 101–127 (1996)

    Article  MathSciNet  Google Scholar 

  12. Banaschewski, B., Pultr, A.: A constructive view of complete regularity. Kyungpook Math. J. 43, 257–262 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Banaschewski, B., Pultr, A.: On weak lattice and frame homomorphisms. Algebra Univers. 51, 137–151 (2004)

    Article  MathSciNet  Google Scholar 

  14. Bénabou, J.: Treillis locaux et paratopologies. Séminaire Ehresmann, 1re année, exposé 2, Paris (1958)

    Google Scholar 

  15. Clementino, M.M.: Separação e Compacidade em Categorias. Doctoral dissertation, University of Coimbra (1992)

    Google Scholar 

  16. Ehresmann, C.: Gattungen von lokalen strukturen. Jber. Deutsch. Math. Verein 60, 59–77 (1957)

    MathSciNet  MATH  Google Scholar 

  17. Erné, M.: Distributors and Wallman locales. Houston J. Math. 34, 69–98 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Erné, M., Picado, J., Pultr, A.: Adjoint maps between implicative semilattices and continuity of localic maps. Algebra Universalis (to appear)

    Google Scholar 

  19. Ferreira, M.J., Picado, J., Pinto, S.: Remainders in pointfree topology. Topology Appl. 245, 21–45 (2018)

    Article  MathSciNet  Google Scholar 

  20. Glivenko, V.: Sur quelque points de la logique de M. Brouwer. Bull. Acad. R. Belg. Cl. Sci. 15, 183–188 (1929)

    MATH  Google Scholar 

  21. Gutiérrez García, J., Mozo Carollo, I., Picado, J.: Presenting the frame of the unit circle. J. Pure Appl. Algebra 220, 976–1001 (2016)

    Article  MathSciNet  Google Scholar 

  22. Gutiérrez García, J., Picado, J., Pultr, A.: Notes on point-free real functions and sublocales. In: Clementino, M.M., Janelidze, G., Picado, J., Sousa, L., Tholen, W. (eds.) Categorical Methods in Algebra and Topology, vol. 46, pp. 167–200. Textos de Matemática, DMUC (2014)

    Google Scholar 

  23. Hausdorff, F.: Grundzüge der mengenlehre. Veit & Co., Leipzig (1914)

    Google Scholar 

  24. Hofmann, K.H., Lawson, J.D.: The spectral theory of distributive continuous lattices. Trans. Am. Math. Soc. 246, 285–310 (1978)

    Article  MathSciNet  Google Scholar 

  25. Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)

    Article  MathSciNet  Google Scholar 

  26. Isbell, J.R., Kříž, I., Pultr, A., Rosický, J.: Remarks on localic groups. In: Borceux, F. (ed.) Categorical Algebra and Its Applications (Proceedings of the International Conference on Louvain-La-Neuve 1987). Lecture Notes in Mathematics, vol. 1348, pp. 154–172. Springer, Berlin (1988)

    Google Scholar 

  27. Johnstone, P.T.: Tychonoff’s theorem without the axiom of choice. Fund. Math. 113, 21–35 (1981)

    Article  MathSciNet  Google Scholar 

  28. Johnstone, P.T.: Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  29. Johnstone, P.T.: The point of pointless topology. Bull. Am. Math. Soc. (N.S.) 8, 41–53 (1983)

    Article  MathSciNet  Google Scholar 

  30. Johnstone, P.T.: Wallman compactification of locales. Houston J. Math. 10, 201–206 (1984)

    MathSciNet  MATH  Google Scholar 

  31. Johnstone, P.T.: A simple proof that localic groups are closed. Cahiers Topologie Géom. Différentielle Catég. 29, 157–161 (1988)

    MathSciNet  MATH  Google Scholar 

  32. Johnstone, P.T.: A constructive “closed subgroup theorem’’ for localic groups and groupoids. Cahiers Topologie Géom. Différentielle Catég. 30, 3–23 (1989)

    MathSciNet  MATH  Google Scholar 

  33. Johnstone, P.T.: Elements of the history of locale theory. In: Lowen, R., Aull, C.E. (eds.) Handbook of the History of General Topology, vol. 3, pp. 835–851. Kluwer Academic Publishers, Dordrecht (2001)

    Chapter  Google Scholar 

  34. Joyal, A.: Nouveaux fondaments de l’analyse. Lectures Montréal 1973 and 1974 (unpublished)

    Google Scholar 

  35. Joyal, A., Tierney, M.: An Extension of the Galois Theory of Grothendieck, vol. 309. AMS: Memoirs of the American Mathematical Society, Providence (1984)

    Google Scholar 

  36. Klinke, O.: A presentation of the assembly of a frame by generators and relations exhibits its bitopological structure. Algebra Univers. 71, 55–64 (2014)

    Article  MathSciNet  Google Scholar 

  37. Kříž, I.: A constructive proof of the Tychonoff’s theorem for locales. Comment. Math. Univ. Carolinae 26, 619–630 (1985)

    MathSciNet  MATH  Google Scholar 

  38. Macnab, D.S.: Modal operators on Heyting algebras. Algebra Univers. 12, 5–29 (1981)

    Article  MathSciNet  Google Scholar 

  39. Madden, J.J., Vermeer, J.: Lindelöf locales and realcompactness. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 99, pp. 473–480 (1986)

    Google Scholar 

  40. Manes, E.G.: Algebraic Theories. Graduate Texts in Mathematics, vol. 26. Springer, Heidelberg (1976)

    Google Scholar 

  41. Niefield, S.B., Rosenthal, K.I.: Spatial sublocales and essential primes. Topology Appl. 26, 263–269 (1987)

    Article  MathSciNet  Google Scholar 

  42. Papert, D., Papert, S.: Sur les treillis des ouverts et paratopologies. Séminaire Ehresmann (1re année, exposé 1), Paris (1958)

    Google Scholar 

  43. Picado, J., Pultr, A.: Locales Treated Mostly in a Covariant Way. Textos de Matemática, vol. 41. University of Coimbra (2008)

    Google Scholar 

  44. Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics, vol. 28. Springer, Basel (2012)

    Google Scholar 

  45. Picado, J., Pultr, A.: Notes on the product of locales. Math. Slovaca 65, 247–264 (2015)

    Article  MathSciNet  Google Scholar 

  46. Picado, J., Pultr, A.: Axiom \(T_D\) and the Simmons sublocale theorem. Comment. Math. Univ. Carolinae 60, 541–551 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Picado, J., Pultr, A.: Separation in Point-Free Topology. Birkhäuser/Springer, Cham (2021)

    Google Scholar 

  48. Pultr, A.: Pointless uniformities I. Complete regularity. Comment. Math. Univ. Carolinae 25, 91–104 (1984)

    MathSciNet  MATH  Google Scholar 

  49. Pultr, A., Tozzi, A.: Separation axioms and frame representation of some topological facts. Appl. Categ. Struct. 2, 107–118 (1994)

    Article  MathSciNet  Google Scholar 

  50. Pultr, A., Úlehla, J.: Notes on characterization of paracompact frames. Comment. Math. Univ. Carolinae 30, 377–384 (1989)

    MathSciNet  MATH  Google Scholar 

  51. Simmons, H.: Spaces with Boolean assemblies. Colloq. Math. 43, 23–29 (1980)

    Article  MathSciNet  Google Scholar 

  52. Simpson, A.: Measure, randomness and sublocales. Ann. Pure Appl. Log. 163, 1642–1659 (2012)

    Article  MathSciNet  Google Scholar 

  53. Stone, M.H.: The theory of representations for Boolean algebras. Trans. Am. Mat. Soc. 40, 37–111 (1936)

    MathSciNet  MATH  Google Scholar 

  54. Thron, W.J.: Lattice-equivalence of topological spaces. Duke Math. J. 29, 671–679 (1962)

    Article  MathSciNet  Google Scholar 

  55. Wallman, H.: Lattices and topological spaces. Ann. Math. 39, 112–126 (1938)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Centre for Mathematics of the University of Coimbra (UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES) and from the Department of Applied Mathematics (KAM) of Charles University (Prague). The first author also acknowledges the UCL project Attractivité internationale et collaborations de recherche dans le cadre du Coimbra group 2017–2020 and an ERASMUS+ Staff Mobility Grant from the University of Coimbra that supported his visit to the Université catholique de Louvain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Picado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Picado, J., Pultr, A. (2021). Notes on Point-Free Topology. In: Clementino, M.M., Facchini, A., Gran, M. (eds) New Perspectives in Algebra, Topology and Categories. Coimbra Mathematical Texts, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-84319-9_6

Download citation

Publish with us

Policies and ethics