Abstract
The low bioavailability of orally administered drugs because of their poor water solubility remains a challenge towards the development of promising drug products. Approximately 40% of drugs with regulatory approval and nearly 90% of drugs in the discovery pipeline are poorly water-soluble. Among other drug delivery systems comprising lipid excipients, the use of solid lipid nanoparticles (SLNs) has emerged for improving the oral bioavailability of loaded poorly water-soluble drugs. This chapter focuses on the following topics. First, it presents the key roles of SLNs as delivery systems, compared to the other drug delivery approaches. Second, the chapter reviews the criteria for selecting suitable lipid excipients and fabrication techniques of SLNs based on the characteristics of drugs and lipids. Third, upon the preparation of drug-loaded SLNs, this chapter presents methods employed for characterizations of this delivery system and discusses in detail the underlying mechanisms by which SLNs facilitate the bioavailability enhancement of poorly water-soluble drugs administered orally. Finally, this chapter presents some of the recent progress of SLNs and their applications towards pharmaceutical development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Salam FS, Elkheshen SA, Mahmoud AA, Ammar HO (2016) Diflucortolone valerate loaded solid lipid nanoparticles as a semisolid topical delivery system. Bull Fac Pharm Cairo Univ 54(1):1–7
Abrams CK, Hamosh M, Lee TC, Ansher AF, Collen MJ, Lewis JH, Benjamin SB, Hamosh P (1988) Gastric lipase: localization in the human stomach. Gastroenterology 95(6):1460–1464
Ali Khan A, Mudassir J, Mohtar N, Darwis Y (2013) Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine 8:2733–2744. https://doi.org/10.2147/IJN.S41521
Ali H, Verma PRP, Dubey SK, Venkatesan J, Seo Y, Kim S-K, Singh SK (2017) In vitro–in vivo and pharmacokinetic evaluation of solid lipid nanoparticles of furosemide using Gastroplus™. RSC Adv 7(53):33314–33326
Almeida AJ, Runge S, Müller RH (1997) Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm. https://doi.org/10.1016/S0378-5173(97)04885-0
Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3):413–420. https://doi.org/10.1023/A:1016212804288
Andrade LN, Oliveira DML, Chaud MV, Alves TFR, Nery M, da Silva CF, Gonsalves JKC, Nunes RS, Corrêa CB, Amaral RG, Sanchez-Lopez E, Souto EB, Severino P (2019) Praziquantel-solid lipid nanoparticles produced by supercritical carbon dioxide extraction: physicochemical characterization, release profile, and cytotoxicity. Molecules. https://doi.org/10.3390/molecules24213881
Awad TS, Helgason T, Kristbergsson K, Weiss J, Decker EA, McClements DJ (2008) Temperature scanning ultrasonic velocity study of complex thermal transformations in solid lipid nanoparticles. Langmuir 24(22):12779–12784
Bachhav SS, Dighe VD, Kotak D, Devarajan PV (2017) Rifampicin Lipid-Polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer’s patch uptake. Int J Pharm 532(1):612–622. https://doi.org/10.1016/j.ijpharm.2017.09.040
Bagby TR, Duan S, Cai S, Yang Q, Thati S, Berkland C, Aires DJ, Laird Forrest M (2012) Lymphatic trafficking kinetics and near-infrared imaging using star polymer architectures with controlled anionic character. Eur J Pharm Sci 47(1):287–294. https://doi.org/10.1016/j.ejps.2012.04.016
Ban C, Jo M, Park YH, Kim JH, Han JY, Lee KW, Kweon D-H, Choi YJ (2020) Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem 302:125328
Bargoni A, Cavalli R, Caputo O, Fundarò A, Gasco MR, Zara GP (1998) Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharm Res 15(5):745–750. https://doi.org/10.1023/a:1011975120776
Battaglia L, Gallarate M, Panciani PP, Ugazio E, Sapino S, Peira E, Chirio D (2014) Techniques for the preparation of solid lipid nano and microparticles. Appl Nanotechnol Drug Deliv. https://doi.org/10.5772/58405
Beg S, Swain S, Rizwan M, Irfanuddin M, Malini DS (2011) Bioavailability enhancement strategies: basics, formulation approaches and regulatory considerations. Curr Drug Deliv 8(6):691–702. https://doi.org/10.2174/156720111797635504
Bunjes H, Westesen K, Koch MHJ (1996) Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int J Pharm 129(1–2):159–173
Bunjes H, Koch MHJ, Westesen K (2003) Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J Pharm Sci 92(7):1509–1520
Caliph SM, Charman WN, Porter CJ (2000) Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci 89(8):1073–1084. https://doi.org/10.1002/1520-6017(200008)89:8<1073::aid-jps12>3.0.co;2-v
Chai G-H, Xu Y, Chen S-Q, Cheng B, Hu F-Q, You J, Du Y-Z, Yuan H (2016) Transport mechanisms of solid lipid nanoparticles across Caco-2 cell monolayers and their related cytotoxicology. ACS Appl Mater Interfaces 8(9):5929–5940. https://doi.org/10.1021/acsami.6b00821
Chaikoff IL, Bloom B, Stevens BP, Reinhardt WO, Dauben WG (1951) Pentadecanoic acid-5-C14: its absorption and lymphatic transport. J Biol Chem 190:431–435
Chakraborty S, Shukla D, Mishra B, Singh S (2009) Lipid – an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm 73(1):1–15. https://doi.org/10.1016/j.ejpb.2009.06.001
Charcosset C, El-Harati A, Fessi H (2005) Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release. https://doi.org/10.1016/j.jconrel.2005.07.023
Chaudhari MB, Desai PP, Patel PA, Patravale VB (2016) Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv Transl Res 6(4):354–364. https://doi.org/10.1007/s13346-015-0267-6
Chirio D, Gallarate M, Trotta M, Carlotti ME, Gaudino EC, Cravotto G (2009) Influence of α-and γ-cyclodextrin lipophilic derivatives on curcumin-loaded SLN. J Incl Phenom Macrocycl Chem 65(3–4):391
Chirio D, Gallarate M, Peira E, Battaglia L, Muntoni E, Riganti C, Biasibetti E, Capucchio MT, Valazza A, Panciani P, Lanotte M, Annovazzi L, Caldera V, Mellai M, Filice G, Corona S, Schiffer D (2014) Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment. Eur J Pharm Biopharm 88(3):746–758. https://doi.org/10.1016/j.ejpb.2014.10.017
Cho H-J, Park JW, Yoon I-S, Kim D-D (2014) Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int J Nanomedicine 9:495–504. https://doi.org/10.2147/IJN.S56648
Chudasama A, Patel V, Nivsarkar M, Vasu K, Shishoo C (2015) Role of lipid-based excipients and their composition on the bioavailability of antiretroviral self-emulsifying formulations. Drug Deliv 22(4):531–540. https://doi.org/10.3109/10717544.2014.891270
Cohen M, Morgan RGH, Hofmann AF (1971) Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology 60(1):1–15
Cole ET, Cadé D, Benameur H (2008) Challenges and opportunities in the encapsulation of liquid and semi-solid formulations into capsules for oral administration. Adv Drug Deliv Rev 60(6):747–756. https://doi.org/10.1016/j.addr.2007.09.009
Corti G, Maestrelli F, Cirri M, Furlanetto S, Mura P (2006a) Development and evaluation of an in vitro method for prediction of human drug absorption I. assessment of artificial membrane composition. Eur J Pharm Sci 27(4):346–353. https://doi.org/10.1016/j.ejps.2005.11.004
Corti G, Maestrelli F, Cirri M, Zerrouk N, Mura P (2006b) Development and evaluation of an in vitro method for prediction of human drug absorption II. Demonstration of the method suitability. Eur J Pharm Sci 27(4):354–362. https://doi.org/10.1016/j.ejps.2005.11.005
Das S, Ng WK, Tan RBH (2012) Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 47(1):139–151
De Jesus MB, Radaic A, Zuhorn IS, De Paula E (2013) Microemulsion extrusion technique: a new method to produce lipid nanoparticles. J Nanopart Res. https://doi.org/10.1007/s11051-013-1960-3
Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13(12):1838–1845. https://doi.org/10.1023/a:1016085108889
Dixon JB (2010) Mechanisms of chylomicron uptake into lacteals. Ann N Y Acad Sci 1207(Suppl):E52–E57. https://doi.org/10.1111/j.1749-6632.2010.05716.x
Dudhipala N, Janga KY, Gorre T (2018) Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation. Artif Cells Nanomed Biotechnol 46(sup2):616–625. https://doi.org/10.1080/21691401.2018.1465068
Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB (2015) Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. DARU J Pharm Sci 23(1):46
El-Say KM, Hosny KM (2018) Optimization of carvedilol solid lipid nanoparticles: an approach to control the release and enhance the oral bioavailability on rabbits. PLoS One 13(8):e0203405
Fadda P, Monduzzi M, Caboi F, Piras S, Lazzari P (2013) Solid lipid nanoparticle preparation by a warm microemulsion based process: influence of microemulsion microstructure. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2013.02.027
Fang J-Y, Fang C-L, Liu C-H, Su Y-H (2008) Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 70(2):633–640
Ferrari PC, Correia MK, Somer A, Ribeiro MA, Astrath NGC, Sato F, Novatski A (2019) Hesperidin-loaded solid lipid nanoparticles: development and physicochemical properties evaluation. J Nanosci Nanotechnol 19(8):4747–4757
Florence AT, Hillery AM, Hussain N, Jani PU (1995) Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J Control Release 36(1–2):39–46
Forster A, Hempenstall J, Tucker I, Rades T (2001) Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm 226(1–2):147–161. https://doi.org/10.1016/S0378-5173(01)00801-8
Freitas C, Müller RH (1999) Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm 47(2):125–132
Gaumet M, Gurny R, Delie F (2009) Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. Eur J Pharm Sci 36(4–5):465–473. https://doi.org/10.1016/j.ejps.2008.11.015
Gershkovich P, Hoffman A (2005) Uptake of lipophilic drugs by plasma derived isolated chylomicrons: linear correlation with intestinal lymphatic bioavailability. Eur J Pharm Sci 26(5):394–404. https://doi.org/10.1016/j.ejps.2005.07.011
Greenhalgh DJ, Williams AC, Timmins P, York P (1999) Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 88(11):1182–1190. https://doi.org/10.1021/js9900856
Gupta B, Poudel BK, Tran TH, Pradhan R, Cho H-J, Jeong J-H, Shin BS, Choi H-G, Yong CS, Kim JO (2015) Modulation of pharmacokinetic and cytotoxicity profile of imatinib base by employing optimized nanostructured lipid carriers. Pharm Res 32(9):2912–2927. https://doi.org/10.1007/s11095-015-1673-7
Hamosh M, Scanlon JW, Ganot D, Likel M, Scanlon KB, Hamosh P (1981) Fat digestion in the newborn: characterization of lipase in gastric aspirates of premature and term infants. J Clin Invest 67(3):838–846
Hansraj GP, Singh SK, Kumar P (2015) Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int J Biol Macromol 81:467–476
Harde H, Das M, Jain S (2011) Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv 8(11):1407–1424. https://doi.org/10.1517/17425247.2011.604311
Helgason T, Awad TS, Kristbergsson K, McClements DJ, Weiss J (2008) Influence of polymorphic transformations on gelation of tripalmitin solid lipid nanoparticle suspensions. J Am Oil Chem Soc 85(6):501–511
Hu FQ, Yuan H, Zhang HH, Fang M (2002) Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm. https://doi.org/10.1016/S0378-5173(02)00081-9
Huang G, Zhang N, Bi X, Dou M (2008) Solid lipid nanoparticles of temozolomide: potential reduction of cardial and nephric toxicity. Int J Pharm 355(1–2):314–320
Jagdale SC, Pawar CR (2014) Application of design of experiment for polyox and xanthan gum coated floating pulsatile delivery of sumatriptan succinate in migraine treatment. Biomed Res Int 2014
Jain S, Patel N, Lin S (2015) Solubility and dissolution enhancement strategies: current understanding and recent trends. Drug Dev Ind Pharm 41(6):875–887. https://doi.org/10.3109/03639045.2014.971027
Jain S, Patel N, Shah MK, Khatri P, Vora N (2017) Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J Pharm Sci 106(2):423–445. https://doi.org/10.1016/j.xphs.2016.10.001
Jenning V, Gohla S (2000) Comparison of wax and glyceride solid lipid nanoparticles (SLN®). Int J Pharm 196(2):219–222
Jenning V, Gohla SH (2001) Encapsulation of retinoids in solid lipid nanoparticles (SLN). J Microencapsul 18(2):149–158
Jenning V, Thünemann AF, Gohla SH (2000) Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm 199(2):167–177
Jenning V, Lippacher A, Gohla SH (2002) Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J Microencapsul 19(1):1–10
Jensen LB, Magnussson E, Gunnarsson L, Vermehren C, Nielsen HM, Petersson K (2010) Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. Int J Pharm 390(1):53–60
Jung C, Hugot J-P, Barreau F (2010) Peyer’s patches: the immune sensors of the intestine. Int J Inflamm 2010:823710. https://doi.org/10.4061/2010/823710
Karpe F, Hamsten A, Uffelman K, Steiner G (1996) Apolipoprotein B-48. Methods Enzymol 263:95–104. https://doi.org/10.1016/s0076-6879(96)63007-9
Keck CM, Kovačević A, Müller RH, Savić S, Vuleta G, Milić J (2014) Formulation of solid lipid nanoparticles (SLN): the value of different alkyl polyglucoside surfactants. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2014.08.008
Kelidari HR, Saeedi M, Akbari J, Morteza-Semnani K, Valizadeh H, Maniruzzaman M, Farmoudeh A, Nokhodchi A (2017) Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability. AAPS PharmSciTech 18(5):1469–1474
Khoo SM, Shackleford DM, Porter CJH, Edwards GA, Charman WN (2003) Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm Res 20(9):1460–1465. https://doi.org/10.1023/A:1025718513246
Kiyasu JY, Bloom B, Chaikoff IL (1952) The portal transport of absorbed fatty acids. J Biol Chem 199(1):415–419
Klausen LH, Fuhs T, Dong M (2016) Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat Commun 7(1):12447. https://doi.org/10.1038/ncomms12447
Ku MS (2008) Use of the biopharmaceutical classification system in early drug development. AAPS J 10(1):208–212. https://doi.org/10.1208/s12248-008-9020-0
Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 133(3):238–244. https://doi.org/10.1016/j.jconrel.2008.10.002
Luo Y, Chen D, Ren L, Zhao X, Qin J (2006) Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release 114(1):53–59
Magee T, Pirinen N, Adler J, Pagakis SN, Parmryd I (2002) Lipid rafts: cell surface platforms for T cell signaling. Biol Res 35(2):127–131. https://doi.org/10.4067/s0716-97602002000200003
Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A (2015) Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm 495(1):439–446. https://doi.org/10.1016/j.ijpharm.2015.09.014
Manjunath K, Venkateswarlu V (2006) Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target 14(9):632–645
Manjunath K, Reddy JS, Venkateswarlu V (2005) Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol 27(2):127–144
Manjunath K, Venkateswarlu V, Hussain A (2011) Preparation and characterization of nitrendipine solid lipid nanoparticles. Die Pharmazie 66(3):178–186
Mehnert W, Mäder K (2012) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 64:83–101
Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM (2018) Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics 10(4):191
Modi S, Anderson BD (2013) Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm 10(8):3076–3089. https://doi.org/10.1021/mp400154a
Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177. https://doi.org/10.1016/s0939-6411(00)00087-4
Müller RH, Radtke M, Wissing SA (2002) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242(1–2):121–128
Müller RH, Runge S, Ravelli V, Mehnert W, Thünemann AF, Souto EB (2006) Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. Int J Pharm 317(1):82–89. https://doi.org/10.1016/j.ijpharm.2006.02.045
Nanjwade BK (2011) Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci Pharm 79(4):705–727. https://doi.org/10.3797/scipharm.1105-09
Nordskog BK, Phan CT, Nutting DF, Tso P (2001) An examination of the factors affecting intestinal lymphatic transport of dietary lipids. Adv Drug Deliv Rev 50(1–2):21–44. https://doi.org/10.1016/s0169-409x(01)00147-8
O’Driscoll CM, Griffin BT (2008) Biopharmaceutical challenges associated with drugs with low aqueous solubility – the potential impact of lipid-based formulations. Adv Drug Deliv Rev 60(6):617–624. https://doi.org/10.1016/j.addr.2007.10.012
Obeidat WM, Schwabe K, Müller RH, Keck CM (2010) Preservation of nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 76(1):56–67
Olbrich C, Kayser O, Müller RH (2002) Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN) – effect of surfactants, storage time and crystallinity. Int J Pharm 237(1–2):119–128
Oner E, Kotmakci M, Kantarci AG (2020) A promising approach to develop nanostructured lipid carriers from solid lipid nanoparticles: preparation, characterization, cytotoxicity and nucleic acid binding ability. Pharm Dev Technol:1–13
Öztürk AA, Aygül A, Şenel B (2019) Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): formulation, characterization, antibacterial activity and cytotoxicity. J Drug Deliv Sci Technol 54:101240
Padhye SG, Nagarsenker MS (2013) Simvastatin solid lipid nanoparticles for oral delivery: formulation development and in vivo evaluation. Indian J Pharm Sci 75(5):591–598
Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N, Mehta A, Vyas SP (2009a) Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomed Nanotechnol Biol Med 5(2):184–191. https://doi.org/10.1016/j.nano.2008.08.003
Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N, Mehta A, Vyas SP (2009b) Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine 5(2):184–191. https://doi.org/10.1016/j.nano.2008.08.003
Pantaleo G, Graziosi C, Demarest JF, Cohen OJ, Vaccarezza M, Gantt K, Muro-Cacho C, Fauci AS (1994) Role of lymphoid organs in the pathogenesis of human immunodeficiency virus (HIV) infection. Immunol Rev 140:105–130
Parhi R, Suresh P (2010) Production of solid lipid nanoparticles-drug loading and release mechanism. J Chem Pharm Res 2(1):211–227
Porter CJ, Charman WN (2001) In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev 50(Suppl 1):S127–S147. https://doi.org/10.1016/s0169-409x(01)00182-x
Porter CJH, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6(3):231–248. https://doi.org/10.1038/nrd2197
Radomska-Soukharev A (2007) Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Deliv Rev 59(6):411–418
Reddy LHV, Murthy RSR (2002) Lymphatic transport of orally administered drugs. Indian J Exp Biol 40(10):1097–1109
Saupe A, Gordon KC, Rades T (2006) Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int J Pharm 314(1):56–62
Shah MK, Madan P, Lin S (2014) Preparation, in vitro evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticles for lymphatic absorption via oral administration. Pharm Dev Technol 19(4):475–485. https://doi.org/10.3109/10837450.2013.795169
Shah MK, Madan P, Lin S (2015) Elucidation of intestinal absorption mechanism of carvedilol-loaded solid lipid nanoparticles using Caco-2 cell line as an in-vitro model. Pharm Dev Technol 20(7):877–885. https://doi.org/10.3109/10837450.2014.938857
Shah MK, Khatri P, Vora N, Patel NK, Jain S, Lin S (2019a) Chapter 5 – lipid nanocarriers: preparation, characterization and absorption mechanism and applications to improve oral bioavailability of poorly water-soluble drugs (A. M. B. T.-B. A. of N. Grumezescu (ed), pp 117–147). William Andrew Publishing. https://doi.org/10.1016/B978-0-12-816506-5.00003-6
Shah MK, Khatri P, Vora N, Patel NK, Jain S, Lin S (2019b) Lipid nanocarriers: preparation, characterization and absorption mechanism and applications to improve oral bioavailability of poorly water-soluble drugs. In: Biomedical applications of nanoparticles. Elsevier, pp 117–147
Shahnaz G, Hartl M, Barthelmes J, Leithner K, Sarti F, Hintzen F, Rahmat D, Salvenmoser W, Bernkop-Schnürch A (2011) Uptake of phenothiazines by the harvested chylomicrons ex vivo model: influence of self-nanoemulsifying formulation design. Eur J Pharm Biopharm 79(1):171–180. https://doi.org/10.1016/j.ejpb.2011.01.025
Shi L-L, Xie H, Lu J, Cao Y, Liu J-Y, Zhang X-X, Zhang H, Cui J-H, Cao Q-R (2016) Positively charged surface-modified solid lipid nanoparticles promote the intestinal transport of docetaxel through multifunctional mechanisms in rats. Mol Pharm 13(8):2667–2676. https://doi.org/10.1021/acs.molpharmaceut.6b00226
Shiau YF (1990) Mechanism of intestinal fatty acid uptake in the rat: the role of an acidic microclimate. J Physiol 421(1):463–474
Shukla T, Upmanyu N, Prakash Pandey S, Gosh D (2018) Chapter 1 – lipid nanocarriers (A. M. B. T.-L. N. for D. T. Grumezescu (ed), pp 1–47). William Andrew Publishing. https://doi.org/10.1016/B978-0-12-813687-4.00001-3
Silva AC, González-Mira E, García ML, Egea MA, Fonseca J, Silva R, Santos D, Souto EB, Ferreira D (2011) Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2011.03.035
Simmonds WJ (1972) The role of micellar solubilization in lipid absorption. Aust J Exp Biol Med Sci 50(4):403–421
Sjöström B, Bergenståhl B (1992) Preparation of submicron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate. Int J Pharm. https://doi.org/10.1016/0378-5173(92)90303-J
Song C, Liu S (2005) A new healthy sunscreen system for human: solid lipid nanoparticles as carrier for 3, 4, 5-trimethoxybenzoylchitin and the improvement by adding Vitamin E. Int J Biol Macromol 36(1–2):116–119
Soni NK, Sonali LJ, Singh A, Mangla B, Neupane YR, Kohli K (2020) Nanostructured lipid carrier potentiated oral delivery of raloxifene for breast cancer treatment. Nanotechnology 31(47):475101
Subramony JA (2006) Apomorphine in dopaminergic therapy. Mol Pharm 3(4):380–385
Swartz MA (2001) The physiology of the lymphatic system. Adv Drug Deliv Rev 50(1–2):3–20
Trevaskis NL, Charman WN, Porter CJH (2008) Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 60(6):702–716. https://doi.org/10.1016/j.addr.2007.09.007
Trevaskis NL, Kaminskas LM, Porter CJH (2015) From sewer to saviour – targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 14(11):781–803. https://doi.org/10.1038/nrd4608
Trotta M, Debernardi F, Caputo O (2003) Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int J Pharm. https://doi.org/10.1016/S0378-5173(03)00135-2
Tsai M-J, Huang Y-B, Wu P-C, Fu Y-S, Kao Y-R, Fang J-Y, Tsai Y-H (2011) Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J Pharm Sci 100(2):547–557. https://doi.org/10.1002/jps.22285
Tso P (1994) Intestinal lipid absorption. Physiol Gastrointestinal Tract 2:1867–1908
van Meer G, de Kroon AIPM (2011) Lipid map of the mammalian cell. J Cell Sci 124(1):5–8. https://doi.org/10.1242/jcs.071233
Wang J-X, Sun X, Zhang Z-R (2002) Enhanced brain targeting by synthesis of 3′, 5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm 54(3):285–290
Weng T, Qi J, Lu Y, Wang K, Tian Z, Hu K, Yin Z, Wu W (2014) The role of lipid-based nano delivery systems on oral bioavailability enhancement of fenofibrate, a BCS II drug: comparison with fast-release formulations. J Nanobiotechnol 12:39. https://doi.org/10.1186/s12951-014-0039-3
Wu C-Y, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22(1):11–23. https://doi.org/10.1007/s11095-004-9004-4
Yadav N, Khatak S, Sara UVS (2013) Solid lipid nanoparticles-a review. Int J Appl Pharm 5(2):8–18
Yáñez JA, Wang SWJ, Knemeyer IW, Wirth MA, Alton KB (2011) Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev 63(10–11):923–942. https://doi.org/10.1016/j.addr.2011.05.019
Yang S, Zhu J, Lu Y, Liang B, Yang C (1999) Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 16(5):751–757. https://doi.org/10.1023/A:1018888927852
You J, Wan F, de Cui F, Sun Y, Du YZ, qiang Hu, F. (2007) Preparation and characteristic of vinorelbine bitartrate-loaded solid lipid nanoparticles. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2007.07.003
Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, Shah VP, Lesko LJ, Chen M-L, Lee VHL, Hussain AS (2002) Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res 19(7):921–925. https://doi.org/10.1023/a:1016473601633
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kaushal, N., Paprikar, A., Soni, A., Lin, S. (2021). Use of Solid Lipid Nanoparticles to Improve the Oral Bioavailability of Poorly Water-Soluble Drugs. In: Kim, JC., Alle, M., Husen, A. (eds) Smart Nanomaterials in Biomedical Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-84262-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-84262-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-84261-1
Online ISBN: 978-3-030-84262-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)