Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, Part III, vol. 12107, pp. 788–817. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_27
CrossRef
Google Scholar
Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, Part III, vol. 10212, pp. 65–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_3
CrossRef
Google Scholar
ANSI: Retail Financial Services Symmetric Key Management Part 1: Using Symmetric Techniques. ANSI X9.24-1-2017 (2017)
Google Scholar
Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1
CrossRef
Google Scholar
Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining message authentication code. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_32
CrossRef
Google Scholar
Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter proofs of CCA security in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, Part II, vol. 11892, pp. 61–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_3
CrossRef
MATH
Google Scholar
Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_12
CrossRef
Google Scholar
Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_25
CrossRef
Google Scholar
Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
CrossRef
MATH
Google Scholar
Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_35
CrossRef
Google Scholar
Brassard, G., HØyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319
CrossRef
Google Scholar
Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, Part II, vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_1
CrossRef
Google Scholar
Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: how to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_26
CrossRef
Google Scholar
Czajkowski, J., Hülsing, A., Schaffner, C.: Quantum indistinguishability of random sponges. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, Part II, vol. 11693, pp. 296–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_11
CrossRef
Google Scholar
Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for authentication of quantum data. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, Part II, vol. 10402, pp. 342–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_12
CrossRef
Google Scholar
Gaži, P., Pietrzak, K., Rybár, M.: The exact PRF security of NMAC and HMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, Part I, vol. 8616, pp. 113–130. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_7
CrossRef
Google Scholar
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: ACM STOC 1996, Proceedings, pp. 212–219 (1996)
Google Scholar
Hosoyamada, A., Iwata, T.: 4-round Luby-Rackoff construction is a qPRP. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, Part I, vol. 11921, pp. 145–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_6
CrossRef
Google Scholar
Hosoyamada, A., Iwata, T.: 4-round Luby-Rackoff construction is a qPRP: tight quantum security bound. IACR Cryptol. ePrint Arch. 2019/243, version 20200720:101411 (2020). (A revised version of [18].)
Google Scholar
Hosoyamada, A., Iwata, T.: On tight quantum security of HMAC and NMAC in the quantum random oracle model (2021). to appear on IACR Cryptology ePrint Archive
Google Scholar
Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ciphers: Davies-Meyer and Merkle-Damgård constructions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 275–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_10
CrossRef
Google Scholar
Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: FSE 2003, Proceedings, pp. 129–153 (2003)
Google Scholar
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, Part II, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8
CrossRef
Google Scholar
Liu, Q., Zhandry, M.: On finding quantum multi-collisions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, Part III, vol. 11478, pp. 189–218. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_7
CrossRef
Google Scholar
Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, Part II, vol. 11693, pp. 326–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_12
CrossRef
Google Scholar
NIST: Secure Hash Standard (SHS). NIST FIPS PUB 180–4 (2015)
Google Scholar
NIST: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. NIST FIPS PUB 202 (2015)
Google Scholar
NIST: Announcing request for nominations for public-key post-quantum cryptographic algorithms. National Institute of Standards and Technology (2016)
Google Scholar
Patarin, J.: The “coefficients H’’ technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_21
CrossRef
Google Scholar
Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, Part III, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_17
CrossRef
MATH
Google Scholar
Sanchez, I.A., Fischer, D.: Authenticated encryption in civilian space missions: context and requirements. DIAC - Directions in Authenticated Ciphers (2012)
Google Scholar
Song, F., Yun, A.: Quantum security of NMAC and related constructions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, Part II, vol. 10402, pp. 283–309. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_10
CrossRef
Google Scholar
Zhandry, M.: How to construct quantum random functions. In: FOCS 2012, Proceedings, pp. 679–687. IEEE (2012)
Google Scholar
Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, Part II, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9
CrossRef
Google Scholar