Skip to main content

New Approaches for Quantum Copy-Protection

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12825)

Abstract

Quantum copy-protection uses the unclonability of quantum states to construct quantum software that provably cannot be pirated. copy-protection would be immensely useful, but unfortunately, little is known about achieving it in general. In this work, we make progress on this goal, by giving the following results:

  • We show how to copy-protect any program that cannot be learned from its input-output behavior relative to a classical oracle. This construction improves on Aaronson (CCC 2009), which achieves the same relative to a quantum oracle. By instantiating the oracle with post-quantum candidate obfuscation schemes, we obtain a heuristic construction of copy-protection.

  • We show, roughly, that any program which can be watermarked can be copy detected, a weaker version of copy-protection that does not prevent copying, but guarantees that any copying can be detected. Our scheme relies on the security of the assumed watermarking, plus the assumed existence of public-key quantum money. Our construction is publicly detectable and applicable to many recent watermarking schemes.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-84242-0_19
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-84242-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    That is, an oracle that implements a quantum operation.

  2. 2.

    Since \(M_0+M_1\) is the identity, \(M_1\) shares the same eigenvectors, with eigenvalue \(1-p\).

References

  1. Aaronson, S.: Limitations of quantum advice and one-way communication. In: Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004, pp. 320–332. IEEE (2004)

    Google Scholar 

  2. Aaronson, S.: Quantum copy-protection and quantum money. In 2009 24th Annual IEEE Conference on Computational Complexity, pp. 229–242. IEEE (2009)

    Google Scholar 

  3. Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 41–60. ACM (2012)

    Google Scholar 

  4. Amos, R., Georgiou, M., Kiayias, A., Zhandry, M.: One-shot signatures and applications to hybrid quantum/classical authentication. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pp. 255–268. Association for Computing Machinery (2020)

    Google Scholar 

  5. Ananth, P., La Placa, R.L.: Secure software leasing (2020)

    Google Scholar 

  6. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    MathSciNet  CrossRef  Google Scholar 

  7. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not necessary for io: circular-secure lwe suffices. Cryptology ePrint Archive, Report 2020/1024 (2020). https://eprint.iacr.org/2020/1024

  8. Ben-David, S., Sattath, O.: Quantum tokens for digital signatures. arXiv preprint arXiv:1609.09047 (2016)

  9. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    CrossRef  Google Scholar 

  10. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Preventing zeroizing attacks on ggh15. In: Proceedings of TCC 2018 (2018)

    Google Scholar 

  11. Broadbent, A., Jeffery, S., Podder, S., Sundaram, A.: Secure software leasing without assumptions. Sébastien Lord (2021)

    Google Scholar 

  12. Broadbent, A., Lord, S.: Uncloneable quantum encryption via random oracles. IACR Cryptol. ePrint Arch. 2019, 257 (2019)

    Google Scholar 

  13. Bitansky, N., Paneth, O.: On non-black-box simulation and the impossibility of approximate obfuscation. SIAM J. Comput. 44(5), 1325–1383 (2015)

    MathSciNet  CrossRef  Google Scholar 

  14. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. SIAM J. Comput. 47(6), 2157–2202 (2018)

    MathSciNet  CrossRef  Google Scholar 

  15. Coladangelo, A., Majenz, C., Poremba, A.: Quantum copy-protection of compute-and-compare programs in the quantum random oracle model (2020)

    Google Scholar 

  16. Goyal, R., Kim, S., Manohar, N., Waters, B., Wu, D.J.: Watermarking public-key cryptographic primitives. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 367–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_12

    CrossRef  Google Scholar 

  17. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 612–621. IEEE (2017)

    Google Scholar 

  18. Georgiou, M., Zhandry, M.: Unclonable decryption keys. Cryptology ePrint Archive, Report 2020/877 (2020). https://eprint.iacr.org/2020/877

  19. Kitagawa, F., Nishimaki, R., Yamakawa, T.: Secure software leasing from standard assumptions (2020)

    Google Scholar 

  20. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lattice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_17

    CrossRef  Google Scholar 

  21. Kim, S., Wu, D.J.: Watermarking PRFs from lattices: stronger security via extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 335–366. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_11

    CrossRef  Google Scholar 

  22. Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assumptions: public marking and security with extraction queries. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 669–698. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_24

    CrossRef  Google Scholar 

  23. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under lwe. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 600–611. IEEE (2017)

    Google Scholar 

  24. Zhandry, M.: How to construct quantum random functions. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 679–687. IEEE (2012)

    Google Scholar 

  25. Zhandry, M.: Schrödinger’s pirate: how to trace a quantum decoder. Cryptology ePrint Archive, Report 2020/1191 (2020). https://eprint.iacr.org/2020/1191

Download references

Acknowledgements

We thank Paul Christiano for suggesting the idea of quantum copy-protection based on [AC12] hidden subspace oracles.

J. L., Q. L., M. Z. and R. Z.’s research is supported by NSF Grant; S. A. is supported by Vannevar Bush Faculty Fellowship from the US Department of Defense, the Simons Foundation’s It from Qubit Collaboration, and a Simons Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Aaronson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Aaronson, S., Liu, J., Liu, Q., Zhandry, M., Zhang, R. (2021). New Approaches for Quantum Copy-Protection. In: Malkin, T., Peikert, C. (eds) Advances in Cryptology – CRYPTO 2021. CRYPTO 2021. Lecture Notes in Computer Science(), vol 12825. Springer, Cham. https://doi.org/10.1007/978-3-030-84242-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84242-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84241-3

  • Online ISBN: 978-3-030-84242-0

  • eBook Packages: Computer ScienceComputer Science (R0)