Skip to main content

Macrophage Targeting by Nanocarriers for Therapy of Autoimmune Diseases

  • Chapter
  • First Online:
Macrophage Targeted Delivery Systems

Abstract

Macrophages and monocytes are essentially the cells of the innate immune system residing in all tissues that include liver and adipose tissue. Owing to their phenotypic flexibility, they play critical roles in tissue homeostasis, but they may also contribute to the initiation and progression of metabolic disorders. Targeted drug delivery to the macrophages appears to be an attractive proposition to improve therapeutic efficacy of enclosed drug. Thus, they are ideal therapeutic targets for diseases such as insulin resistance, nonalcoholic fatty liver disease, and atherosclerosis. Currently, development in the field of drug delivery has enabled phenotype-specific targeting of macrophages. Macrophages can be exploited as Trojan horses for targeted drug delivery. Nanocarriers can migrate across the different membrane barriers and release their drug cargo at sites of infection. In this review, we deliberate on the advances in therapeutics for autoimmune disorders via macrophage-specific delivery.

We highlight microspheres/microparticles, liposomes, nanoparticles, dendrimers, metallic lipid nanoparticles for targeted delivery to the macrophages and how they can be optimized to alter the macrophage phenotype to exploit its therapeutic potential to combat metabolically favorable tissue environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.

    PubMed  PubMed Central  Google Scholar 

  • Ariizumi K, Shen GL, Shikano S, Xu S, Ritter R III, Kumamoto T, et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem. 2000;275(26):20157–67.

    CAS  PubMed  Google Scholar 

  • Attama AA, Momoh MA, Builders PF. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. Recent Adv Novel Drug Carrier Syst. 2012;5:107–40.

    Google Scholar 

  • Banwell B, Bar-Or A, Arnold DL, Sadovnick D, Narayanan S, McGowan M, et al. Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: a prospective national cohort study. Lancet Neurol. 2011;10(5):436–45.

    CAS  PubMed  Google Scholar 

  • Berwin B, Delneste Y, Lovingood RV, Post SR, Pizzo SV. SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J Biol Chem. 2004;279(49):51250–7.

    CAS  PubMed  Google Scholar 

  • Bilthariya U, Jain N, Rajoriya V, Jain AK. Folate-conjugated albumin nanoparticles for rheumatoid arthritis-targeted delivery of etoricoxib. Drug Dev Ind Pharm. 2015;41(1):95–104.

    CAS  PubMed  Google Scholar 

  • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96.

    CAS  PubMed  Google Scholar 

  • Bramow S, Frischer JM, Lassmann H, Koch-Henriksen N, Lucchinetti CF, Sørensen PS, Laursen H. Demyelination versus remyelination in progressive multiple sclerosis. Brain. 2010;133(10):2983–98.

    PubMed  Google Scholar 

  • Cao J, Naeem M, Noh JK, Lee EH, Yoo JW. Dexamethasone phosphate-loaded folate-conjugated polymeric nanoparticles for selective delivery to activated macrophages and suppression of inflammatory responses. Macromol Res. 2015;23(5):485–92.

    CAS  Google Scholar 

  • Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol. 2004;5(10):981–6.

    CAS  PubMed  Google Scholar 

  • Chalmers SA, Chitu V, Ramanujam M, Putterman C. Therapeutic targeting of macrophages in lupus nephritis. Discov Med. 2015;20(108):43–9.

    PubMed  Google Scholar 

  • Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV. Folate coupled poly (ethyleneglycol) conjugates of anionic poly (amidoamine) dendrimer for inflammatory tissue specific drug delivery. J Biomed Mater Res A. 2007;82(1):92–103.

    PubMed  Google Scholar 

  • Chen S, Chen B, Wen Z, Huang Z, Ye L. IL-33/ST2-mediated inflammation in macrophages is directly abrogated by IL-10 during rheumatoid arthritis. Oncotarget. 2017;8(20):32407.

    PubMed  PubMed Central  Google Scholar 

  • Chen M, Daddy JCKA, Su Z, Guissi NEI, Xiao Y, Zong L, Ping Q. Folate receptor-targeting and reactive oxygen species-responsive liposomal formulation of methotrexate for treatment of rheumatoid arthritis. Pharmaceutics. 2019;11(11):582.

    CAS  PubMed Central  Google Scholar 

  • Cho JH, Feldman M. Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat Med. 2015;21(7):730–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denney L, Kok WL, Cole SL, Sanderson S, McMichael AJ, Ho LP. Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J Immunol. 2012;189(2):551–7.

    CAS  PubMed  Google Scholar 

  • Derkus B, Bozkurt PA, Tulu M, Emregul KC, Yucesan C, Emregul E. Simultaneous quantification of myelin basic protein and tau proteins in cerebrospinal fluid and serum of multiple sclerosis patients using nanoimmunosensor. Biosens Bioelectron. 2017;89:781–8.

    CAS  PubMed  Google Scholar 

  • Dongsheng Z, Zhiguang F, Junfeng J, Zifan L, Li W. Cyclophilin A aggravates collagen-induced arthritis via promoting classically activated macrophages. Inflammation. 2017;40(5):1761–72.

    PubMed  Google Scholar 

  • Drummond RA, Saijo S, Iwakura Y, Brown GD. The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur J Immunol. 2011;41(2):276–81.

    CAS  PubMed  Google Scholar 

  • Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014;41(1):21–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes JC, Qiu X, Winnik FM, Benderdour M, Zhang X, Dai K, Shi Q. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies. Int J Nanomedicine. 2012;7:5833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiete DJ, Beranek MC, Baenziger JU. A cysteine-rich domain of the “mannose” receptor mediates GalNAc-4-SO4 binding. Proc Natl Acad Sci. 1998;95(5):2089–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox RI, Howell FV, Bone RC, Michelson P. Primary Sjögren’s syndrome: proposed criteria for classification. Arthritis Rheum. 1984;14:77–105.

    CAS  Google Scholar 

  • Fu W, Wojtkiewicz G, Weissleder R, Benoist C, Mathis D. Early window of diabetes determinism in NOD mice, dependent on the complement receptor CRIg, identified by noninvasive imaging. Nat Immunol. 2012;13(4):361.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard PJ, Appeldoorn CC, Rip J, Dorland R, van der Pol SM, Kooij G, et al. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J Control Release. 2012;164(3):364–9.

    CAS  PubMed  Google Scholar 

  • Gazi U, Martinez-Pomares L. Influence of the mannose receptor in host immune responses. Immunobiology. 2009;214(7):554–61.

    CAS  PubMed  Google Scholar 

  • Glucksam-Galnoy Y, Zor T, Margalit R. Hyaluronan-modified and regular multilamellar liposomes provide sub-cellular targeting to macrophages, without eliciting a pro-inflammatory response. J Control Release. 2012;160(2):388–93.

    CAS  PubMed  Google Scholar 

  • Godsell J, Rudloff I, Kandane-Rathnayake R, Hoi A, Nold MF, Morand EF, Harris J. Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci Rep. 2016;6(1):1–10.

    Google Scholar 

  • Gorantla S, Singhvi G, Rapalli VK, Waghule T, Dubey SK, Saha RN. Targeted drug-delivery systems in the treatment of rheumatoid arthritis: recent advancement and clinical status. Ther Deliv. 2020;11(4):269–84.

    CAS  PubMed  Google Scholar 

  • Greenwell-Wild T, Moutsopoulos NM, Gliozzi M, Kapsogeorgou E, Rangel Z, Munson PJ, et al. Chitinases in the salivary glands and circulation of patients with Sjögren’s syndrome: macrophage harbingers of disease severity. Arthritis Rheum. 2011;63(10):3103–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayder M, Poupot M, Baron M, Nigon D, Turrin CO, Caminade AM, et al. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Science translational medicine. 2011;3(81):81ra35.

    PubMed  Google Scholar 

  • He S, Liang Y, Shao F, Wang X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3–mediated pathway. Proc Natl Acad Sci. 2011;108(50):20054–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Fan D, Liang W, Wang Q, Fang J. Matrix metalloproteinase-responsive PEGylated lipid nanoparticles for controlled drug delivery in the treatment of rheumatoid arthritis. ACS Appl Bio Mater. 2020;3(5):3276–84.

    CAS  PubMed  Google Scholar 

  • Hogquist KA, Jameson SC. The self-obsession of T cells: how TCR signaling thresholds affect fate ‘decisions’ and effector function. Nat Immunol. 2014;15(9):815.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle–mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2009;17(1):162–8.

    CAS  PubMed  Google Scholar 

  • Huang YJ, Shiau AL, Chen SY, Chen YL, Wang CR, Tsai CY, et al. Multivalent structure of galectin-1-nanogold complex serves as potential therapeutics for rheumatoid arthritis by enhancing receptor clustering. Eur Cell Mater. 2012;23:170–81.

    CAS  PubMed  Google Scholar 

  • Jahagirdar P, Lokhande AS, Dandekar P, Devarajan PV. Mannose receptor and targeting strategies. In: Targeted intracellular drug delivery by receptor mediated endocytosis. Cham: Springer; 2019. p. 433–56.

    Google Scholar 

  • Jain S, Amiji M. Tuftsin-modified alginate nanoparticles as a noncondensing macrophage-targeted DNA delivery system. Biomacromolecules. 2012;13(4):1074–85.

    CAS  PubMed  Google Scholar 

  • Jain NK, Mishra V, Mehra NK. Targeted drug delivery to macrophages. Expert Opin Drug Deliv. 2013;10(3):353–67.

    CAS  PubMed  Google Scholar 

  • Janossy G, Duke O, Poulter LW, Panayi G, Bofill M, Goldstein G. Rheumatoid arthritis: a disease of T-lymphocyte/macrophage immunoregulation. Lancet. 1981;318(8251):839–42.

    Google Scholar 

  • Jiang HR, Milovanović M, Allan D, Niedbala W, Besnard AG, Fukada SY, et al. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur J Immunol. 2012;42(7):1804–14.

    CAS  PubMed  Google Scholar 

  • Katsifis GE, Moutsopoulos NM, Wahl SM. T lymphocytes in Sjögren’s syndrome: contributors to and regulators of pathophysiology. Clin Rev Allergy Immunol. 2007;32(3):252–64.

    CAS  PubMed  Google Scholar 

  • Kawane K, Fukuyama H, Kondoh G, Takeda J, Ohsawa Y, Uchiyama Y, Nagata S. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science. 2001;292(5521):1546–9.

    CAS  PubMed  Google Scholar 

  • Kawane K, Ohtani M, Miwa K, Kizawa T, Kanbara Y, Yoshioka Y, et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature. 2006;443(7114):998–1002.

    CAS  PubMed  Google Scholar 

  • Kerrigan AM, Brown GD. Syk-coupled C-type lectins in immunity. Trends Immunol. 2011;32(4):151–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, An H, Rieter WJ, Esserman D, Taylor-Pashow KM, Sartor RB, et al. Multimodal optical and Gd-based nanoparticles for imaging in inflammatory arthritis. Clin Exp Rheumatol. 2009;27(4):580–6.

    CAS  PubMed  Google Scholar 

  • Kottarath SK, Bhat M, Verma C, Bhattacharya S, Kaul A, Kumar U, Dinda AK. Folate receptor-β targeted cholesterol-chitosan nanocarrier for treatment of rheumatoid arthritis: An animal study. J Drug Deliv Sci Technol. 2020;60:101946.

    CAS  Google Scholar 

  • Kumar H, Venkatesh N, Bhowmik H, Kuila A. Metallic nanoparticle: a review. Biomed J Sci Tech Res. 2018;4(2):3765–75.

    Google Scholar 

  • Laria A, Lurati A, Marrazza M, Mazzocchi D, Re KA, Scarpellini M. The macrophages in rheumatic diseases. J Inflamm Res. 2016;9:1.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Lee K, Kim IK, Park TG. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials. 2008;29(35):4709–18.

    CAS  PubMed  Google Scholar 

  • Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017;74(13):2345–60.

    CAS  PubMed  Google Scholar 

  • Li H, Adamopoulos IE, Moulton VR, Stillman IE, Herbert Z, Moon JJ, et al. Systemic lupus erythematosus favors the generation of IL-17 producing double negative T cells. Nat Commun. 2020;11(1):1–12.

    Google Scholar 

  • Lin NY. OP0087 autophagy contributes to TNFα-mediated joint destruction. Ann Rheum Dis. 2013;71(Suppl 3):82–3.

    Google Scholar 

  • Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol. 2014;14(3):154–65.

    CAS  PubMed  Google Scholar 

  • Littlewood-Evans A, Sarret S, Apfel V, Loesle P, Dawson J, Zhang J, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med. 2016;213(9):1655–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Li Y, Yu J, Feng L, Hou S, Liu Y, et al. Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One. 2013;8(2):e54841.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma WT, Chang C, Gershwin ME, Lian ZX. Development of autoantibodies precedes clinical manifestations of autoimmune diseases: a comprehensive review. J Autoimmun. 2017;83:95–112.

    CAS  PubMed  Google Scholar 

  • Ma WT, Gao F, Gu K, Chen DK. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front Immunol. 2019;10:1140.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan K, Rojekar S, Desai D, Kulkarni S, Vavia P. Efavirenz loaded nanostructured lipid carriers for efficient and prolonged viral inhibition in HIV-infected macrophages. Pharma Sci. 2020; https://doi.org/10.34172/PS.2020.96.

  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592–9.

    CAS  PubMed  Google Scholar 

  • Maldonado RA, LaMothe RA, Ferrari JD, Zhang AH, Rossi RJ, Kolte PN, et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci. 2015;112(2):E156–65.

    CAS  PubMed  Google Scholar 

  • Malkiel S, Barlev AN, Atisha-Fregoso Y, Suurmond J, Diamond B. Plasma cell differentiation pathways in systemic lupus erythematosus. Front Immunol. 2018;9:427.

    PubMed  PubMed Central  Google Scholar 

  • Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine. 2010;5(2):269–85.

    CAS  PubMed  Google Scholar 

  • McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42.

    CAS  PubMed  Google Scholar 

  • Mellor-Pita S, Citores MJ, Castejon R, Yebra-Bango M, Tutor-Ureta P, Rosado S, et al. Monocytes and T lymphocytes contribute to a predominance of interleukin 6 and interleukin 10 in systemic lupus erythematosus. Cytometry B Clin Cytom. 2009;76(4):261–70.

    PubMed  Google Scholar 

  • Misharin AV, Cuda CM, Saber R, Turner JD, Gierut AK, Haines GK III, et al. Nonclassical Ly6C− monocytes drive the development of inflammatory arthritis in mice. Cell Rep. 2014;9(2):591–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol. 2010;11(1):21–7.

    CAS  PubMed  Google Scholar 

  • Mukhtar M, Ali H, Ahmed N, Munir R, Talib S, Khan AS, Ambrus R. Drug delivery to macrophages: a review of nano-therapeutics targeted approach for inflammatory disorders and cancer. Expert Opin Drug Deliv. 2020;17(9):1239–57.

    CAS  PubMed  Google Scholar 

  • Mulherin D, Fitzgerald O, Bresnihan B. Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Arthritis Rheum. 1996;39(1):115–24.

    CAS  PubMed  Google Scholar 

  • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar M, Jain NK. Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm Res. 2009;26(12):2588–98.

    CAS  PubMed  Google Scholar 

  • Navegantes KC, de Souza Gomes R, Pereira PAT, Czaikoski PG, Azevedo CHM, Monteiro MC. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med. 2017;15(1):1–21.

    Google Scholar 

  • Nogueira E, Lager F, Le Roux D, Nogueira P, Freitas J, Charvet C, et al. Enhancing methotrexate tolerance with folate tagged liposomes in arthritic mice. J Biomed Nanotechnol. 2015;11(12):2243–52.

    CAS  PubMed  Google Scholar 

  • Ojha S, Kumar B. Preparation and statistical modeling of solid lipid nanoparticles of dimethyl fumarate for better management of multiple sclerosis. Adv Pharm Bull. 2018;8(2):225.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira IM, Gonçalves C, Reis RL, Oliveira JM. Engineering nanoparticles for targeting rheumatoid arthritis: past, present, and future trends. Nano Res. 2018;11(9):4489–506.

    CAS  Google Scholar 

  • Orme J, Mohan C. Macrophages and neutrophils in SLE—an online molecular catalog. Autoimmun Rev. 2012;11(5):365–72.

    CAS  PubMed  Google Scholar 

  • Ousman SS, Kubes P. Immune surveillance in the central nervous system. Nat Neurosci. 2012;15(8):1096–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park KS, Kang JH, Sa KH, Koo HB, Cho HJ, Nam EJ, Youn IC, Kim KM, Kim IS, Kwon IC, et al. In vivo quantitative measurement of arthritis activity based on hydrophobically modified glycol chitosan in inflammatory arthritis: more active than passive accumulation. Mol Imaging. 2012;11:389–400.

    CAS  PubMed  Google Scholar 

  • Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8(2):147–66.

    CAS  PubMed  Google Scholar 

  • Peter JM, Thomas AW. Protective and pathogenic function of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37.

    Google Scholar 

  • Piccolo V, Curina A, Genua M, Ghisletti S, Simonatto M, Sabò A, et al. Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat Immunol. 2017;18(5):530–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plüddemann A, Neyen C, Gordon S. Macrophage scavenger receptors and host-derived ligands. Methods. 2007;43(3):207–17.

    PubMed  Google Scholar 

  • Prakash J, Beljaars L, Harapanahalli AK, Zeinstra-Smith M, de Jager-Krikken A, Hessing M, et al. Tumor-targeted intracellular delivery of anticancer drugs through the mannose-6-phosphate/insulin-like growth factor II receptor. Int J Cancer. 2010;126(8):1966–81.

    CAS  PubMed  Google Scholar 

  • Prasad SR, Elango K, Damayanthi D, Saranya JS. Formulation and evaluation of azathioprine loaded silver nanopartilces for the treatment of rheumatoid arthritis. Asian J Biomed Pharm Sci. 2013;3(23):28–32.

    Google Scholar 

  • Pruthi J, Mehra NK, Jain NK. Macrophages targeting of amphotericin B through mannosylated multiwalled carbon nanotubes. J Drug Target. 2012;20(7):593–604.

    CAS  PubMed  Google Scholar 

  • Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi R, Majoros I, Misra AC, Koch AE, Campbell P, Marotte H, et al. Folate receptor-targeted dendrimer-methotrexate conjugate for inflammatory arthritis. J Biomed Nanotechnol. 2015;11(8):1431–41.

    CAS  PubMed  Google Scholar 

  • Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47.

    PubMed  Google Scholar 

  • Röszer T. Understanding the biology of self-renewing macrophages. Cell. 2018;7(8):103.

    Google Scholar 

  • Rothlin CV, Carrera-Silva EA, Bosurgi L, Ghosh S. TAM receptor signaling in immune homeostasis. Annu Rev Immunol. 2015;33:355–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sack U, Stiehl P, Geiler G. Distribution of macrophages in rheumatoid synovial membrane and its association with basic activity. Rheumatol Int. 1994;13(5):181–6.

    CAS  PubMed  Google Scholar 

  • Schmitt F, Lagopoulos L, Käuper P, Rossi N, Busso N, Barge J, et al. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J Control Release. 2010;144(2):242–50.

    CAS  PubMed  Google Scholar 

  • Sharma G, Saini MK, Thakur K, Kapil N, Garg NK, Raza K, et al. Aceclofenac cocrystal nanoliposomes for rheumatoid arthritis with better dermatokinetic attributes: a preclinical study. Nanomedicine. 2017;12(6):615–38.

    CAS  PubMed  Google Scholar 

  • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimaoka T, Nakayama T, Fukumoto N, Kume N, Takahashi S, Yamaguchi J, et al. Cell surface-anchored SR-PSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC chemokine receptor 6-expressing cells. J Leukoc Biol. 2004;75(2):267–74.

    CAS  PubMed  Google Scholar 

  • Shin TH, Kim HS, Kang TW, Lee BC, Lee HY, Kim YJ, et al. Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis. Cell Death Dis. 2016;7(12):–e2524.

    Google Scholar 

  • Soldano S, Trombetta AC, Contini P, Tomatis V, Ruaro B, Brizzolara R, et al. Increase in circulating cells coexpressing M1 and M2 macrophage surface markers in patients with systemic sclerosis. Ann Rheum Dis. 2018;77(12):1842–5.

    CAS  PubMed  Google Scholar 

  • Sun W, Zhang H, Wang H, Chiu YG, Wang M, Ritchlin CT, et al. Targeting notch-activated M1 macrophages attenuates joint tissue damage in a mouse model of inflammatory arthritis. J Bone Miner Res. 2017;32(7):1469–80.

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Shirai M, Asada K, Yasui H, Karayama M, Hozumi H, et al. Macrophage mannose receptor, CD206, predict prognosis in patients with pulmonary tuberculosis. Sci Rep. 2018;8(1):1–9.

    Google Scholar 

  • Ta W, Chawla A, Pollard JW. Origins and hallmarks of macrophages: development, homeostasis, and disease. Nature. 2013;496:445–55.

    Google Scholar 

  • Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, Baker JR Jr. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum. 2011;63(9):2671–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujimura K, Ikehara Y, Nagata T, Koide Y, Kojima N. Induction of anti-tumor immune responses with oligomannose-coated liposomes targeting to peritoneal macrophages. Procedia Vaccinol. 2009;1(1):127–34.

    CAS  Google Scholar 

  • Upchurch K, Oh S, Joo H. Dectin-1 in the control of Th2-type T cell responses. Receptors Clin Investig. 2016;3(1):e1094.

    PubMed  PubMed Central  Google Scholar 

  • Ushio A, Arakaki R, Yamada A, Saito M, Tsunematsu T, Kudo Y, Ishimaru N. Crucial roles of macrophages in the pathogenesis of autoimmune disease. World J Immunol. 2017;7(1):1.

    Google Scholar 

  • Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation. 2013;10(1):1–12.

    Google Scholar 

  • Waldmann H. Tolerance: an overview and perspectives. Nat Rev Nephrol. 2010;6(10):569–76.

    CAS  PubMed  Google Scholar 

  • Wildenberg ME, Welzen-Coppens JM, van Helden-Meeuwsen CG, Bootsma H, Vissink A, van Rooijen N, et al. Increased frequency of CD16+ monocytes and the presence of activated dendritic cells in salivary glands in primary Sjögren syndrome. Ann Rheum Dis. 2009;68(3):420–6.

    CAS  PubMed  Google Scholar 

  • Williams AS, Camilleri JP, Williams BD. Suppression of adjuvant-induced arthritis by liposomally conjugated methotrexate in the rat. Rheumatology. 1994;33(6):530–3.

    CAS  Google Scholar 

  • Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM. Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem. 2015;26(7):1198–211.

    CAS  PubMed  Google Scholar 

  • Xu N, Li J, Gao Y, Zhou N, Ma Q, Wu M, et al. Apoptotic cell-mimicking gold nanocages loaded with LXR agonist for attenuating the progression of murine systemic lupus erythematosus. Biomaterials. 2019;197:380–92.

    CAS  PubMed  Google Scholar 

  • Yang M, Ding J, Zhang Y, Chang F, Wang J, Gao Z, et al. Activated macrophage-targeted dextran–methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. J Mater Chem B. 2016;4(12):2102–13.

    CAS  PubMed  Google Scholar 

  • Yang Y, Guo L, Wang Z, Liu P, Liu X, Ding J, Zhou W. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials. 2021;264:120390.

    CAS  PubMed  Google Scholar 

  • Yarilina A, Xu K, Chan C, Ivashkiv LB. Regulation of inflammatory responses in tumor necrosis factor–activated and rheumatoid arthritis synovial macrophages by JAK inhibitors. Arthritis Rheum. 2012;64(12):3856–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye L, Wen Z, Li Y, Chen B, Yu T, Liu L, et al. Interleukin-10 attenuation of collagen-induced arthritis is associated with suppression of interleukin-17 and retinoid-related orphan receptor γt production in macrophages and repression of classically activated macrophages. Arthritis Res Ther. 2014;16(2):1–14.

    Google Scholar 

  • Yeste A, Nadeau M, Burns EJ, Weiner HL, Quintana FJ. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2012;109:11270–5. https://doi.org/10.1073/pnas.1120611109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yilmaz B, Spalinger MR, Biedermann L, Franc Y, Fournier N, Rossel JB, et al. The presence of genetic risk variants within PTPN2 and PTPN22 is associated with intestinal microbiota alterations in Swiss IBD cohort patients. PLoS One. 2018;13(7):e0199664.

    PubMed  PubMed Central  Google Scholar 

  • Yoshitomi H, Sakaguchi N, Kobayashi K, Brown GD, Tagami T, Sakihama T, et al. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med. 2005;201(6):949–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Jie X, Xu L, Chen C, Shen W, Cao Y, et al. Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules. 2015;16(9):2588–98.

    CAS  PubMed  Google Scholar 

  • Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S. Scavenger receptor structure and function in health and disease. Cell. 2015;4(2):178–201.

    Google Scholar 

  • Zhang J, Chen C, Fu H, Yu J, Sun Y, Huang H, et al. MicroRNA-125a-loaded polymeric nanoparticles alleviate systemic lupus erythematosus by restoring effector/regulatory T cells balance. ACS Nano. 2020;14(4):4414–29.

    CAS  PubMed  Google Scholar 

  • Zhao J, Zhang X, Sun X, Zhao M, Yu C, Lee RJ, et al. Dual-functional lipid polymeric hybrid pH-responsive nanoparticles decorated with cell penetrating peptide and folate for therapy against rheumatoid arthritis. Eur J Pharm Biopharm. 2018;130:39–47.

    CAS  PubMed  Google Scholar 

  • Zhou M, Hou J, Zhong Z, Hao N, Lin Y, Li C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv. 2018;25(1):716–22.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Kamra Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, L., Yadav, M., Singh, P., Talegaonkar, S., Verma, A.K. (2022). Macrophage Targeting by Nanocarriers for Therapy of Autoimmune Diseases. In: Gupta, S., Pathak, Y.V. (eds) Macrophage Targeted Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-84164-5_14

Download citation

Publish with us

Policies and ethics