Skip to main content

Precision Agriculture’s Economic Benefits in Greece: An Exploratory Statistical Analysis

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme IV: Actions

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 185))

Abstract

As we are heading for the third decade of the twenty-first century, Precision Agriculture is the most modern way to improve agricultural processes/actions that take place on arable land, like harvesting, irrigation or fertilizer use. Its main idea is based on the concept that every farm has different needs across its area. So, Precision Agriculture offers the capability to customize decisions regarding inputs like water and optimize agricultural equipment use like an agricultural vehicle so as to improve outputs. As its use spreads across the globe, it is interesting to study the range of innovation diffusion on agriculture in Greece and see the differentiation of Greek districts, their innovative actions and economic outcomes that come up. To achieve this goal a study took place across Greece collecting 1032 answers from farmers on mainland Greece and Crete. The Ascending Hierarchy Clustering was used to process the data and the results demonstrated that some crop categories are more profitable than others and there are districts consisted of common characteristics. In addition, an innovation map was created, in conjunction with its benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eise J, Foster K (2018) How to feed the world

    Google Scholar 

  2. Zarco-Tejada PJ, Bubbard N, Loudjani P (2014) Precision Agriculture: An Opportunity for EU Farmers - Potential Support with the CAP 2014-2020

    Google Scholar 

  3. Fountas S, Aggelopoulou K, Gemtos TA (2016) Precision agriculture: Crop management for improved productivity and reduced environmental impact or improved sustainability. In: Eleftherios I, Bochtis D, Vlachos D, Dimitrios A (eds) Supply Chain Management for Sustainable Food Networks. John Wiley & Sons, Ltd., pp 41–65

    Chapter  Google Scholar 

  4. Hunt ER, Daughtry CST (2018) What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int J Remote Sens 39:5345–5376. https://doi.org/10.1080/01431161.2017.1410300

    Article  Google Scholar 

  5. Zude-Sasse M, Fountas S, Gemtos TA, Abu-Khalaf N (2016) Applications of precision agriculture in horticultural crops. Eur J Hortic Sci 81:78–90. https://doi.org/10.17660/eJHS.2016/81.2.2

    Article  Google Scholar 

  6. Guardo E, Di Stefano A, La Corte A, et al (2018) A fog computing-based IoT framework for precision agriculture. J Internet Technol 19:1401–1411. https://doi.org/10.3966/160792642018091905012

    Article  Google Scholar 

  7. Basso B, Dumont B, Cammarano D, et al (2016) Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Sci Total Environ 545–546:227–235. https://doi.org/10.1016/j.scitotenv.2015.12.104

    Article  Google Scholar 

  8. Moral FJ, Terron JM, Marques da Silva JR (2010) Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res 106:335–343

    Article  Google Scholar 

  9. Yao R-J, Yang J-S, Zhang T-J, et al (2014) Determination of site-specific management zones using soil physico-chemical properties and crop yields in coastal reclaimed farmland. Geoderma 232:381–393

    Article  Google Scholar 

  10. Córdoba MA, Bruno CI, Costa JL, et al (2016) Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosyst Eng 143:95–107. https://doi.org/10.1016/j.biosystemseng.2015.12.008

    Article  Google Scholar 

  11. Pedersen SM, Lind KM (2017) Precision agriculture: Technology and economic perspectives. Springer International Publishing

    Book  Google Scholar 

  12. van Evert FK, Gaitán-Cremaschi D, Fountas S, Kempenaar C (2017) Can precision agriculture increase the profitability and sustainability of the production of potatoes and olives? Sustain 9. https://doi.org/10.3390/su9101863

  13. Balafoutis A, Beck B, Fountas S, et al (2017) Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustain 9:1–28. https://doi.org/10.3390/su9081339

    Article  Google Scholar 

  14. Liakos V, Tagarakis A, Aggelopoulou K, et al (2017) In-season prediction of yield variability in an apple orchard. Eur J Hortic Sci 82:251–259. https://doi.org/10.17660/eJHS.2017/82.5.5

    Article  Google Scholar 

  15. Yost MA, Kitchen NR, Sudduth KA, et al (2019) A long-term precision agriculture system sustains grain profitability. Precis Agric 20:1177–1198. https://doi.org/10.1007/s11119-019-09649-7

    Article  Google Scholar 

  16. Lambert D, Lowenberg-DeBoer J (2000) Precision Agriculture Profitability Review

    Google Scholar 

  17. Hedley CB, Yule IJ (2009) Soil water status mapping and two variable-rate irrigation scenarios. Precis Agric 10:342–355

    Article  Google Scholar 

  18. Timmermann C, Gerhards R, Kuhbauch W (2003) The Economic Impact of Site-Specific Weed Control. Precis Agric 4:249–260

    Article  Google Scholar 

  19. Vasileiadis VP, Sattin M, Otto S, et al (2011) Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management. Agric Syst 104:533–540

    Article  Google Scholar 

  20. Joao RSM, Conrado DR, da Romeu RCC, et al (2016) Study of an electromechanical system for solid fertilizer variable rate planting. African J Agric Res 11:159–165. https://doi.org/10.5897/ajar2014.9349

    Article  Google Scholar 

  21. He X, Ding Y, Zhang D, et al (2019) Development of a variable-rate seeding control system for corn planters Part II: Field performance. Comput Electron Agric 162:309–317. https://doi.org/10.1016/j.compag.2019.04.010

    Article  Google Scholar 

  22. Guo J, Li X, Li Z, et al (2018) Multi-GNSS precise point positioning for precision agriculture. Precis Agric 19:895–911. https://doi.org/10.1007/s11119-018-9563-8

    Article  Google Scholar 

  23. dos Santos AF, da Silva RP, Zerbato C, et al (2019) Use of real-time extend GNSS for planting and inverting peanuts. Precis Agric 20:840–856. https://doi.org/10.1007/s11119-018-9616-z

    Article  Google Scholar 

  24. Shockley JM, Dillon CR, Stombaugh TS (2011) A Whole Farm Analysis of the Influence of Auto-Steer Navigation on Net Returns, Risk, and Production Practices. J Agric Appl Econ 43:57–75. https://doi.org/10.1017/s1074070800004053

    Article  Google Scholar 

  25. Bora GC, Nowatzki JF, Roberts DC (2012) Energy savings by adopting precision agriculture in rural USA. Energy Sustain Soc 2:1–5. https://doi.org/10.1186/2192-0567-2-22

    Article  Google Scholar 

  26. Ortiz B V., Balkcom KB, Duzy L, et al (2013) Evaluation of agronomic and economic benefits of using RTK-GPS-based auto-steer guidance systems for peanut digging operations. Precis Agric 14:357–375. https://doi.org/10.1007/s11119-012-9297-y

    Article  Google Scholar 

  27. Jensen HG, Jacobsen L-B, Pedersen SM, Tavella E (2012) Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precis Agric 13:661–677

    Article  Google Scholar 

  28. Barnes A, De Soto I, Eory V, et al (2019) Influencing factors and incentives on the intention to adopt precision agricultural technologies within arable farming systems. Environ Sci Policy 93:66–74. https://doi.org/10.1016/j.envsci.2018.12.014

    Article  Google Scholar 

  29. Radoglou-Grammatikis P, Sarigiannidis P, Lagkas T, Moscholios I (2020) A compilation of UAV applications for precision agriculture. Comput Networks 172:107148. https://doi.org/10.1016/j.comnet.2020.107148

    Article  Google Scholar 

  30. Maes WH, Steppe K (2019) Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci 24:152–164. https://doi.org/10.1016/j.tplants.2018.11.007

    Article  Google Scholar 

  31. Bac CW, Van Henten EJ, Hemming J, Edan Y (2014) Robots for High Value Crops: State of the Art Review and Challenges Ahead. J F Robot 31:888–911

    Article  Google Scholar 

  32. Ball D, Ross P, English A, et al (2015) Robotics for Sustainable Broad-Acre Agriculture. In: Mejias L, Corke P, Roberts J (eds) Springer Tracts in Advanced Robotics. Springer, Cham

    Google Scholar 

  33. Nuske S, Wilshusen K, Achar S, et al (2014) Automated Visual Yield Estimation in Vineyards. J Fields Robot 31:837–860

    Article  Google Scholar 

  34. Wachowiak MP, Walters DF, Kovacs JM, et al (2017) Visual analytics and remote sensing imagery to support community-based research for precision agriculture in emerging areas. Comput Electron Agric 143:149–164. https://doi.org/10.1016/j.compag.2017.09.035

    Article  Google Scholar 

  35. Vuran MC, Salam A, Wong R, Irmak S (2018) Internet of underground things in precision agriculture: Architecture and technology aspects. Ad Hoc Networks 81:160–173. https://doi.org/10.1016/j.adhoc.2018.07.017

    Article  Google Scholar 

  36. Schumpeter JA (1935) The Analysis of Economic Change Author (s): Joseph A. Schumpeter Source: The Review of Economics and Statistics, Vol. 17, No. 4 (May, 1935), pp. 2–10 Published by: The MIT Press Stable URL: http://www.jstor.org/stable/1927845. Anal Econ Chang 17:2–10

  37. OECD (2005) Oslo Manual

    Google Scholar 

  38. Association of Greek Regions (2011) Regions of Greece. In: Assoc. Greek Reg.

    Google Scholar 

  39. Hellenic Statistical Authority (2020) Greece in Figures

    Google Scholar 

  40. Kountios G, Ragkos A, Bournaris T, et al (2018) Educational needs and perceptions of the sustainability of precision agriculture: survey evidence from Greece. Precis Agric 19:537–554. https://doi.org/10.1007/s11119-017-9537-2

    Article  Google Scholar 

  41. ELSTAT (2019) Yearly Agricultural Research

    Google Scholar 

  42. Milone P, Ventura F (2019) New generation farmers: Rediscovering the peasantry. J Rural Stud 65:43–52. https://doi.org/10.1016/j.jrurstud.2018.12.009

    Article  Google Scholar 

  43. Moschidis O (2015) Unified coding of qualitative and quantitative variables and their analysis with ascendant hierarchical classification. Int J Data Anal Tech Strateg 7:114–128. https://doi.org/10.1504/IJDATS.2015.068745

    Article  Google Scholar 

  44. Moschidis O, Chadjipadelis T (2017) A method for transforming ordinal variables. Stud Classif Data Anal Knowl Organ 285–294. https://doi.org/10.1007/978-3-319-55723-6_22

  45. Markos A, Moschidis O, Chadjipadelis T (2020) Sequential dimension reduction and clustering of mixed-type data. Int J Data Anal Tech Strateg 12:28–30

    Google Scholar 

  46. Benzecri J-P (1973) Analyse des Données (T.1: La Taxinomie, T.2: Correspondances). Dunod, Paris

    Google Scholar 

  47. Benzecri J-P (1981) Practique De l’Analyse des donnees. Vol 3: Linguistique et lexicologie. Dunod, Paris

    Google Scholar 

  48. Benzecri J-P (1982) Construction d’ une Classification Ascendante Hiérarchique par la recherché en chaîne des Voisins Réchiproques. Les Cah l’ Anal des Données VII:209–218

    Google Scholar 

  49. Benzecri J-P, Benzecri F, Maiti GD (1992) Pratique de l’ Analyse des Données en Médecine. Vol4: Medecine, Pharmacologie, Physiologie clinique. Statmatic, Paris

    Google Scholar 

  50. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  MathSciNet  Google Scholar 

  51. Aldenderfer MS, Blashfield RK (1984) Cluster Analysis. Sage Univ Pap 44:88

    Google Scholar 

  52. Moschidis O (2003) Contribution to comparative survey of multidimensional scales with the methods of multivariate analysis

    Google Scholar 

  53. Lebart L, Morineau A, Piron M (2000) Statistique Exploratoire Multidimensionnelle. Dunod, Paris

    MATH  Google Scholar 

  54. Morineau A (1984) Note sur la caracterisation statistique d’ une classe et les valeurs-tests. Bull Tech du Cent Stat Inform Appliquées 2:20–27

    Google Scholar 

  55. Bechrakis TE (1999) Multidimensional Data Analysis. Nea Sinora - Livani, Athens

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Falaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Falaras, A., Moschidis, S. (2021). Precision Agriculture’s Economic Benefits in Greece: An Exploratory Statistical Analysis. In: Bochtis, D.D., Pearson, S., Lampridi, M., Marinoudi, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme IV: Actions. Springer Optimization and Its Applications, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-030-84156-0_9

Download citation

Publish with us

Policies and ethics