Skip to main content

A Circular Precision Farming System Towards the Optimization of Dairy Value-Chains

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme IV: Actions

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 185))

  • 462 Accesses

Abstract

A large part of the agricultural environmental impacts are attributed to conventional agricultural operations related to livestock and the associated crops, due to the inappropriate use of resources such as water and fertilizers. The resulting non-optimal value chains in such production systems, mostly suffer due to the insufficient data handling and processing. The rapid improvement of technology has led to the adoption of Information and Communication Technology (ICT) tools in the agricultural supply chain under the recently introduced farm management concept called precision agriculture. Additionally, the integration of the principles of circular economy in agriculture-related ICT technologies, can lead to the development of Circular Precision Farming Systems. Such tools measure and monitor all aspects of the farming system, providing the user with integrated solutions leading to the improved sustainability of the farm through optimal resource use and management. The present chapter focuses on the conceptualization of such a Circular Precision Farming System, presenting the basic elements and requirements for its realization in the two basic pillars of agriculture; crop production and dairy farming. Considering the complex interaction within the value chain between the crops grown for feed and the animals, such systems can serve as decision support to guide farmers and farming enterprises take appropriate actions throughout the supply chain, maximizing profit and minimizing risks and environmental footprint in agri-food production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peters, G.M.; Wiedemann, S.G.; Rowley, H. V.; Tucker, R.W. Accounting for water use in australian red meat production. Int. J. Life Cycle Assess. 2010, 15, 311–320.

    Article  Google Scholar 

  2. Eurostat Agriculture, forestry and fishery statistics; 2013; ISBN 9789279330056.

    Google Scholar 

  3. European Commission Nitrogen Pollution and the European Environment: Implications for Air Quality Policy. Sci. Environ. Policy IN-DEPTH Rep. 2013, 28.

    Google Scholar 

  4. Paris Agreement.

    Google Scholar 

  5. European Commission A policy framework for climate and energy in the period from 2020 up to 2030; 2014

    Google Scholar 

  6. European Union Agriculture, forestry and fishery statistics; 2019; ISBN 9789279330056.

    Google Scholar 

  7. Achillas, C.; Bochtis, D. Toward a Green, Closed-Loop, Circular Bioeconomy: Boosting the Performance Efficiency of Circular Business Models. Sustainability 2020, 12, 10142.

    Article  Google Scholar 

  8. Adegbeye, M.J.; Ravi Kanth Reddy, P.; Obaisi, A.I.; Elghandour, M.M.M.Y.; Oyebamiji, K.J.; Salem, A.Z.M.; Morakinyo-Fasipe, O.T.; Cipriano-Salazar, M.; Camacho-DĂ­az, L.M. Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations - An overview. J. Clean. Prod. 2020, 242, 118319.

    Google Scholar 

  9. Sopegno, A.; Rodias, E.; Bochtis, D.; Busato, P.; Berruto, R.; Boero, V.; Sørensen, C. Model for Energy Analysis of Miscanthus Production and Transportation. Energies 2016, 9, 392.

    Article  Google Scholar 

  10. de Wit, M.; Behrendt, H.; Bendoricchio, G.; Bleuten, W.; van Gaans, P. The contribution of agriculture to nutrient pollution in three European rivers, with reference to the European Nitrates Directive. Eur. Water Manag. Online 2002, 19.

    Google Scholar 

  11. Mehmood, T.; Chaudhry, M.M.; Tufail, M.; Irfan, N. Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchem. J. 2009, 91, 94–99.

    Article  Google Scholar 

  12. Aneja, V.P.; Roelle, P.A.; Murray, G.C.; Southerland, J.; Erisman, J.W.; Fowler, D.; Asman, W.A.H.; Patni, N. Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment. Atmos. Environ. 2001, 35, 1903–1911.

    Article  Google Scholar 

  13. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities; 2013; ISBN 9789251079201.

    Google Scholar 

  14. Sejian, V.; Bhatta, R.; Malik, P.K.; Madiajagan, B.; Al-Hosni, Y.A.S.; Sullivan, M.; Gaughan, J.B. Livestock as Sources of Greenhouse Gases and Its Significance to Climate Change. In Greenhouse Gases; InTech, 2016.

    Google Scholar 

  15. EEA Water resources across Europe – confronting water scarcity and drought. EEA Report 2/2009; 2009; ISBN 9789291679898.

    Google Scholar 

  16. Tullberg, J. Tillage, traffic and sustainability—A challenge for ISTRO. Soil Tillage Res. 2010, 111, 26–32.

    Article  Google Scholar 

  17. Tullberg, J.N.; Yule, D.F.; McGarry, D. Controlled traffic farming—From research to adoption in Australia. Soil Tillage Res. 2007, 97, 272–281.

    Article  Google Scholar 

  18. Mouazen, A.; Palmqvist, M. Development of a Framework for the Evaluation of the Environmental Benefits of Controlled Traffic Farming. Sustainability 2015, 7, 8684–8708.

    Article  Google Scholar 

  19. Bochtis, D.D.; Sørensen, C.G.; Jørgensen, R.N.; Green, O. Modelling of material handling operations using controlled traffic. Biosyst. Eng. 2009, 103.

    Google Scholar 

  20. Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145.

    Article  Google Scholar 

  21. Tullberg, J.N.; Ziebarth, P.J.; Li, Y. Tillage and traffic effects on runoff. Aust. J. Soil Res. 2001, 39, 249.

    Article  Google Scholar 

  22. McPhee, J.E.; Braunack, M.V.; Garside, A.L.; Reid, D.J.; Hilton, D.J. Controlled Traffic for Irrigated Double Cropping in a Semi-arid Tropical Environment: Part 2, Tillage Operations and Energy Use. J. Agric. Eng. Res. 1995, 60, 183–189.

    Article  Google Scholar 

  23. Bennett, J.M.; Roberton, S.D.; Jensen, T.A.; Antille, D.L.; Hall, J. A comparative study of conventional and controlled traffic in irrigated cotton: I. Heavy machinery impact on the soil resource. Soil Tillage Res. 2017, 168, 143–154.

    Article  Google Scholar 

  24. Samuel Gan-Mor, S.; Rex L.; Clark, R.L. DGPS-Based Automatic Guidance - Implementation and Economical Analysis. In Proceedings of the 2001 Sacramento, CA July 29-August 1,2001; American Society of Agricultural and Biological Engineers: St. Joseph, MI, 2001; p. 1.

    Google Scholar 

  25. Bochtis, D.D.; Sørensen, C.G.; Green, O.; Moshou, D.; Olesen, J. Effect of controlled traffic on field efficiency. Biosyst. Eng. 2010, 106.

    Google Scholar 

  26. Bochtis, D.D.; Sørensen, C.G.; Busato, P.; Hameed, I.A.; Rodias, E.; Green, O.; Papadakis, G. Tramline establishment in controlled traffic farming based on operational machinery cost. Biosyst. Eng. 2010, 107, 221–231.

    Article  Google Scholar 

  27. Jensen, M.A.F.; Bochtis, D.; Sørensen, C.G.; Blas, M.R.; Lykkegaard, K.L. In-field and inter-field path planning for agricultural transport units. Comput. Ind. Eng. 2012, 63, 1054–1061.

    Article  Google Scholar 

  28. Hameed, I.A.; Bochtis, D.D.; Sørensen, C.G.; Nøremark, M. Automated generation of guidance lines for operational field planning. Biosyst. Eng. 2010, 107.

    Google Scholar 

  29. Bochtis, D.D.; Sørensen, C.G.; Vougioukas, S.G. Path planning for in-field navigation-aiding of service units. Comput. Electron. Agric. 2010, 74, 80–90.

    Article  Google Scholar 

  30. Hameed, I.A.; Bochtis, D.D.; Sørensen, C.G.; Jensen, A.L.; Larsen, R. Optimized driving direction based on a three-dimensional field representation. Comput. Electron. Agric. 2013, 91, 145–153.

    Article  Google Scholar 

  31. Hameed, I.A.; Bochtis, D.D.; Sørensen, C.G.; Vougioukas, S. An object-oriented model for simulating agricultural in-field machinery activities. Comput. Electron. Agric. 2012, 81.

    Google Scholar 

  32. Cheah, I.; Phau, I. Attitudes towards environmentally friendly products: The influence of ecoliteracy, interpersonal influence and value orientation. Mark. Intell. Plan. 2011, 29, 452–472.

    Article  Google Scholar 

  33. Achillas, C.; Bochtis, D.D.; Aidonis, D.; Folinas, D. Green Supply Chain Management; Routledge, 2018;

    Book  Google Scholar 

  34. Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Sustainable crop production system. In Plant, Soil and Microbes: Volume 1: Implications in Crop Science; Springer International Publishing, 2016; pp. 103–116 ISBN 9783319274553.

    Google Scholar 

  35. Bochtis, D.; Sørensen, C.A.G.; Kateris, D. Operations management in agriculture; Elsevier, 2018; ISBN 9780128097861.

    Google Scholar 

  36. Saidu, A.; Clarkson, A.M.; Adamu, S.H.; Mohammed, M.; Jibo, I. Application of ICT in Agriculture: Opportunities and Challenges in Developing Countries. Int. J. Comput. Sci. Math. Theory 2017, 3, 8–18.

    Google Scholar 

  37. Sørensen, C.G.; Pesonen, L.; Bochtis, D.D.; Vougioukas, S.G.; Suomi, P. Functional requirements for a future farm management information system. Comput. Electron. Agric. 2011, 76.

    Google Scholar 

  38. Sørensen, C.G.; Bochtis, D.D. Conceptual model of fleet management in agriculture. Biosyst. Eng. 2010, 105, 41–50.

    Article  Google Scholar 

  39. Sørensen, C.G.; Fountas, S.; Nash, E.; Pesonen, L.; Bochtis, D.; Pedersen, S.M.; Basso, B.; Blackmore, S.B. Conceptual model of a future farm management information system. Comput. Electron. Agric. 2010, 72, 37–47.

    Article  Google Scholar 

  40. Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676.

    Article  Google Scholar 

  41. Bochtis, D.D.; Sørensen, C.G.C.; Busato, P. Advances in agricultural machinery management: A review. Biosyst. Eng. 2014, 126, 69–81.

    Article  Google Scholar 

  42. Rodias, E.; Berruto, R.; Busato, P.; Bochtis, D.; Sørensen, C.G.; Zhou, K. Energy savings from optimised in-field route planning for agricultural machinery. Sustain. 2017, 9.

    Google Scholar 

  43. Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11.

    Article  Google Scholar 

  44. McBride, W.D.; Daberkow, S.G. Information and the Adoption of Precision Farming Technologies. J. Agribus. 2003, 21, 21.

    Google Scholar 

  45. Zink, T.; Geyer, R. Circular Economy Rebound. J. Ind. Ecol. 2017, 21, 593–602.

    Article  Google Scholar 

  46. Peano, C.; Tecco, N.; Dansero, E.; Girgenti, V.; Sottile, F. Evaluating the sustainability in complex agri-food systems: The SAEMETH framework. Sustain. 2015, 7, 6721–6741.

    Article  Google Scholar 

  47. Iakovou, E.; Bochtis, D.; Vlachos, D.; Aidonis, D. Sustainable Agrifood Supply Chain Management. In Supply Chain Management for Sustainable Food Networks; John Wiley & Sons, Ltd: Chichester, UK, 2016; pp. 1–39 ISBN 9781118937495.

    Google Scholar 

  48. Iakovou, E.; Bochtis, D.; Vlachos, D.; Aidonis, D. Supply Chain Management for Sustainable Food Networks; 2015; ISBN 9781118937495.

    Google Scholar 

  49. Cecchini, L.; Venanzi, S.; Pierri, A.; Chiorri, M. Environmental efficiency analysis and estimation of CO2 abatement costs in dairy cattle farms in Umbria (Italy): A SBM-DEA model with undesirable output. J. Clean. Prod. 2018, 197, 895–907.

    Article  Google Scholar 

  50. Noya, I.; González-García, S.; Berzosa, J.; Baucells, F.; Feijoo, G.; Moreira, M.T. Environmental and water sustainability of milk production in Northeast Spain. Sci. Total Environ. 2018.

    Google Scholar 

  51. de Vito, R.; Portoghese, I.; Pagano, A.; Fratino, U.; Vurro, M. An index-based approach for the sustainability assessment of irrigation practice based on the water-energy-food nexus framework. Adv. Water Resour. 2017.

    Google Scholar 

  52. Samperio, A.; Moñino, M.J.; Vivas, A.; Blanco-Cipollone, F.; Martín, A.G.; Prieto, M.H. Effect of deficit irrigation during stage II and post-harvest on tree water status, vegetative growth, yield and economic assessment in “Angeleno” Japanese plum. Agric. Water Manag. 2015.

    Google Scholar 

  53. Romero, P.; Muñoz, R.G.; Fernández-Fernández, J.I.; del Amor, F.M.; Martínez-Cutillas, A.; García-García, J. Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation. Agric. Water Manag. 2015.

    Google Scholar 

  54. Ali, Q.; Ashraf, M. Exogenously applied glycinebetaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environ. Exp. Bot. 2011.

    Google Scholar 

  55. Sørensen, C.A.G.; Kateris, D.; Bochtis, D. ICT Innovations and Smart Farming. In Proceedings of the Communications in Computer and Information Science; 2019.

    Google Scholar 

  56. Tsolakis, N.; Bechtsis, D.; Bochtis, D. Agros: A robot operating system based emulation tool for agricultural robotics. Agronomy 2019.

    Google Scholar 

  57. Angelopoulou, T.; Balafoutis, A.; Zalidis, G.; Bochtis, D. From laboratory to proximal sensing spectroscopy for soil organic carbon estimation-A review. Sustain. 2020, 12.

    Google Scholar 

  58. Bochtis, D.D.; Sørensen, C.G. The vehicle routing problem in field logistics part I. Biosyst. Eng. 2009, 104, 447–457.

    Article  Google Scholar 

  59. Bochtis, D.D.; Sørensen, C.G. The vehicle routing problem in field logistics: Part II. Biosyst. Eng. 2010, 105, 180–188.

    Article  Google Scholar 

  60. Jensen, M.F.; Bochtis, D.; Sørensen, C.G. Coverage planning for capacitated field operations, part II: Optimisation. Biosyst. Eng. 2015, 139.

    Google Scholar 

  61. Jensen, M.F.; Nørremark, M.; Busato, P.; Sørensen, C.G.; Bochtis, D. Coverage planning for capacitated field operations, Part I: Task decomposition, Biosyst. Eng. 2015, 139, 136–148.

    Article  Google Scholar 

  62. Busato, P.; Sørensen, C.G.; Pavlou, D.; Bochtis, D.D.; Berruto, R.; Orfanou, A. DSS tool for the implementation and operation of an umbilical system applying organic fertiliser. Biosyst. Eng. 2013, 114.

    Google Scholar 

  63. Menexes, I.; Kolorizos, V.; Arvanitis, C.; Banias, G.; Kateris, D.; Bochtis, D. Robotics applications in agriculture with the use of an integrated information system. In Proceedings of the 11th National Conference of the Hellenic Society of Agricultural Engineers; Volos, Greece, 2019.

    Google Scholar 

  64. Bochtis, D.D.; Sørensen, C.G.; Busato, P.; Berruto, R. Benefits from optimal route planning based on B-patterns. Biosyst. Eng. 2013, 115.

    Google Scholar 

  65. Moysiadis, V.; Tsolakis, N.; Katikaridis, D.; Sørensen, C.G.; Pearson, S.; Bochtis, D. Mobile Robotics in Agricultural Operations: A Narrative Review on Planning Aspects. Appl. Sci. 2020, 10, 3453.

    Article  Google Scholar 

  66. Marinoudi, V.; Sørensen, C.G.; Pearson, S.; Bochtis, D. Robotics and labour in agriculture. A context consideration. Biosyst. Eng. 2019, 184, 111–121.

    Article  Google Scholar 

  67. Groot Koerkamp, P.W.G.; Metz, J.H.M.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.; Hartung, J.; Seedorf, J.; et al. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. J. Agric. Eng. Res. 1998.

    Google Scholar 

  68. Lampridi, M.G.; Sørensen, C.G.; Bochtis, D. Agricultural Sustainability: A Review of Concepts and Methods. Sustainability 2019, 11, 5120.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Operational Programme Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK-03987) “BioCircular: Bioproduction System for Circular Precision Farming”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lampridi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lampridi, M., Angelopoulou, T., Tagarakis, A.C., Bochtis, D.D. (2021). A Circular Precision Farming System Towards the Optimization of Dairy Value-Chains. In: Bochtis, D.D., Pearson, S., Lampridi, M., Marinoudi, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme IV: Actions. Springer Optimization and Its Applications, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-030-84156-0_4

Download citation

Publish with us

Policies and ethics