Skip to main content

Towards Sustainable Agriculture: Challenges from the Transition to the New Digital Era

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme IV: Actions

Abstract

Providing sufficient food to meet the needs of the ever-increasing population, as expressed by the term food security, has posed a number of challenges to modern agriculture. Towards that direction, the transition to the digital era of agriculture aims at addressing nutritional needs, also taking into account the emerging problems. The present chapter firstly attempts to present the challenges faced by modern agriculture on the environment, the economy and the society. Subsequently, a series of sustainable ways to address these challenges is presented, including an overview of innovative technologies such as precision agriculture, alternative farming as well as the importance of ergonomics in agriculture along with the relative advancements. The chapter concludes with the investigation of the socioeconomic difficulties faced by farmers when adopting technological innovations and the factors that affect their successful adoption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rome Declaration and Plan of Action

    Google Scholar 

  2. Tzounis A, Katsoulas N, Bartzanas T, Kittas C (2017) Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 164:31–48

    Article  Google Scholar 

  3. Saiz-Rubio V, Rovira-Más F (2020) From smart farming towards agriculture 5.0: A review on crop data management. Agronomy

    Google Scholar 

  4. Wang H, He Q, Liu X, et al (2012) Global urbanization research from 1991 to 2009: A systematic research review. Landsc. Urban Plan. 104:299–309

    Article  Google Scholar 

  5. World Bank Open Data | Data

    Google Scholar 

  6. Boland MJ, Rae AN, Vereijken JM, et al (2013) The future supply of animal-derived protein for human consumption. Trends Food Sci. Technol. 29:62–73

    Article  Google Scholar 

  7. Conrad Z, Niles MT, Neher DA, et al (2018) Relationship between food waste, diet quality, and environmental sustainability. PLoS One 13. https://doi.org/10.1371/journal.pone.0195405

  8. Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515:518–522. https://doi.org/10.1038/nature13959

    Article  Google Scholar 

  9. Ruini LF, Ciati R, Pratesi CA, et al (2015) Working toward Healthy and Sustainable Diets: The “Double Pyramid Model” Developed by the Barilla Center for Food and Nutrition to Raise Awareness about the Environmental and Nutritional Impact of Foods. Front Nutr 2. https://doi.org/10.3389/fnut.2015.00009

  10. Chasek P, Safriel U, Shikongo S, Fuhrman VF (2015) Operationalizing Zero Net Land Degradation: The next stage in international efforts to combat desertification? J Arid Environ 112:5–13. https://doi.org/10.1016/j.jaridenv.2014.05.020

    Article  Google Scholar 

  11. Safriel UN (2007) The assessment of global trends in land degradation. Environ Sci Eng (Subseries) Environ Sci 1–38. https://doi.org/10.1007/978-3-540-72438-4_1

  12. Vogt J V., Safriel U, Von Maltitz G, et al (2011) Monitoring and assessment of land degradation and desertification: Towards new conceptual and integrated approaches. L. Degrad. Dev. 22:150–165

    Article  Google Scholar 

  13. De Clercq, M.; Vats, A.; Biel A (2018) Agriculture 4.0 – Farming Technology to Meet Food and Climate Goals

    Google Scholar 

  14. United Nations Conference on Sustainable Development, Rio+20.:. Sustainable Development Knowledge Platform

    Google Scholar 

  15. Thomas CD, Cameron A, Green RE, et al (2004) Extinction risk from climate change. Nature 427:145–148. https://doi.org/10.1038/nature02121

    Article  Google Scholar 

  16. Dawson TP, Jackson ST, House JI, et al (2011) Beyond predictions: Biodiversity conservation in a changing climate. Science (80-.). 332:53–58

    Article  Google Scholar 

  17. Gardi C, Jeffery S, Saltelli A (2013) An estimate of potential threats levels to soil biodiversity in EU. Glob Chang Biol 19:1538–1548. https://doi.org/10.1111/gcb.12159

    Article  Google Scholar 

  18. Barrett CB, Bellemare MF, Hou JY (2010) Reconsidering Conventional Explanations of the Inverse Productivity-Size Relationship. World Dev 38:88–97

    Article  Google Scholar 

  19. Woodhouse P (2010) Beyond industrial agriculture? Some questions about farm size, productivity and sustainability. J Agrar Chang 10:437–453. https://doi.org/10.1111/j.1471-0366.2010.00278.x

    Article  Google Scholar 

  20. Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron. Sustain. Dev. 32:273–303

    Article  Google Scholar 

  21. Keating BA, Carberry PS, Bindraban PS, et al (2010) Eco-efficient agriculture: Concepts, Challenges, And opportunities. Crop Sci 50:S-109-S-119. https://doi.org/10.2135/cropsci2009.10.0594

  22. Tscharntke T, Clough Y, Wanger T, et al (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Article  Google Scholar 

  23. Wintle BA, Bekessy SA, Keith DA, et al (2011) Ecological--economic optimization of biodiversity conservation under climate change. Nat Clim Chang 1. https://doi.org/10.1038/NCLIMATE1227

  24. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories—IPCC

    Google Scholar 

  25. Jin Z, Ainsworth EA, Leakey ADB, Lobell DB (2018) Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob Chang Biol 24:e522–e533. https://doi.org/10.1111/gcb.13946

    Article  Google Scholar 

  26. Pugh TAM, Müller C, Elliott J, et al (2016) Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms12608

    Article  Google Scholar 

  27. Agovino M, Casaccia M, Ciommi M, et al (2019) Agriculture, climate change and sustainability: The case of EU-28. Ecol Indic 105:525–543. https://doi.org/10.1016/j.ecolind.2018.04.064

    Article  Google Scholar 

  28. 2015 - The State of Food Insecurity in the World 2015 | World Food Programme

    Google Scholar 

  29. Magadza CHD (2000) Climate change impacts and human settlements in Africa: Prospects for adaptation. Environ Monit Assess 61:193–205. https://doi.org/10.1023/A:1006355210516

    Article  Google Scholar 

  30. Fonta WM, Kedir AM, Bossa AY, et al (2018) A Ricardian valuation of the impact of climate change on Nigerian cocoa production: Insight for adaptation policy. Int J Clim Chang Strateg Manag 10:689–710. https://doi.org/10.1108/IJCCSM-05-2016-0074

    Article  Google Scholar 

  31. Loboguerrero A, Campbell B, Cooper P, et al (2019) Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems. Sustainability 11:1372. https://doi.org/10.3390/su11051372

    Article  Google Scholar 

  32. Abd-Elmabod SK, Muñoz-Rojas M, Jordán A, et al (2020) Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma 374:114453. https://doi.org/10.1016/j.geoderma.2020.114453

    Article  Google Scholar 

  33. Anderson R, Bayer PE, Edwards D (2020) Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 56:197–202

    Article  Google Scholar 

  34. Liu M, Xu X, Jiang Y, et al (2020) Responses of crop growth and water productivity to climate change and agricultural water-saving in arid region. Sci Total Environ 703:134621. https://doi.org/10.1016/j.scitotenv.2019.134621

    Article  Google Scholar 

  35. Hodges RJ, Buzby JC, Bennett B (2011) Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. J Agric Sci 149:37–45. https://doi.org/10.1017/S0021859610000936

    Article  Google Scholar 

  36. Salihoglu G, Salihoglu NK, Ucaroglu S, Banar M (2018) Food loss and waste management in Turkey. Bioresour. Technol. 248:88–99

    Article  Google Scholar 

  37. Food Loss and Food Waste | FAO | Food and Agriculture Organization of the United Nations

    Google Scholar 

  38. Noack AL, Pouw NRM (2015) A blind spot in food and nutrition security: where culture and social change shape the local food plate. Agric Human Values 32:169–182. https://doi.org/10.1007/s10460-014-9538-y

    Article  Google Scholar 

  39. Food waste is responsible for 6% of global greenhouse gas emissions - Our World in Data

    Google Scholar 

  40. Arcury TA, Quandt SA, Russell GB (2002) Pesticide safety among farmworkers: Perceived risk and perceived control as factors reflecting environmental justice. Environ. Health Perspect. 110:233–240

    Article  Google Scholar 

  41. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, et al (2016) Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front Public Heal 4:1. https://doi.org/10.3389/fpubh.2016.00148

    Article  Google Scholar 

  42. Alewu B, Nosiri C (2011) Pesticides and Human Health. In: Pesticides in the Modern World—Effects of Pesticides Exposure. InTech. https://www.intechopen.com/chapters/19601; https://doi.org/10.5772/18734

  43. Mnif W, Ibn A, Hassine H, et al (2011) Effect of Endocrine Disruptor Pesticides: A Review. OPEN ACCESS Int J Environ Res Public Heal 8:2265–2303. https://doi.org/10.3390/ijerph8062265

    Article  Google Scholar 

  44. Nieuwenhuijsen MJ, Noderer KS, Schenker MB, et al (1999) Personal exposure to dust, endotoxin and crystalline silica in California agriculture. Ann Occup Hyg 43:35–42

    Article  Google Scholar 

  45. Cerhan JR, Cantor KP, Williamson K, et al (1998) Cancer mortality among Iowa farmers: Recent results, time trends, and lifestyle factors (United States). Cancer Causes Control 9:311–319. https://doi.org/10.1023/A:1008877204830

    Article  Google Scholar 

  46. Fathallah FA (2010) Musculoskeletal disorders in labor-intensive agriculture. Appl Ergon 41:738–743. https://doi.org/10.1016/j.apergo.2010.03.003

    Article  Google Scholar 

  47. McCurdy SA, Samuels SJ, Carroll DJ, et al (2003) Agricultural injury in California migrant Hispanic farm workers. Am J Ind Med 44:225–235. https://doi.org/10.1002/ajim.10272

    Article  Google Scholar 

  48. Hartman E, Oude Vrielink HHE, Huirne RBM, Metz JHM (2003) Sick leave analysis among self-employed Dutch farmers. Occup Med (Chic Ill) 53:461–468. https://doi.org/10.1093/occmed/kqg089

    Article  Google Scholar 

  49. Bernard C, Tourne M (2007) [Musculoskeletal disorders in agriculture]. Rev Prat 57:45–50

    Google Scholar 

  50. Benos L, Tsaopoulos D, Bochtis D (2020) A Review on Ergonomics in Agriculture. Part I: Manual Operations. Appl Sci 10:1905. https://doi.org/10.3390/app10061905

    Article  Google Scholar 

  51. Kirkhorn S, Greenlee RT, Reeser JC (2003) The Epidemiology of Agriculture-related Osteoarthritis and its Impact on Occupational Disability. Wis Med J 102:38–44

    Google Scholar 

  52. Benos L, Tsaopoulos D, Bochtis D (2020) A Review on Ergonomics in Agriculture. Part II: Mechanized Operations. Appl Sci 10:3484. https://doi.org/10.3390/app10103484

    Article  Google Scholar 

  53. Van Pham L, Smith C (2014) Drivers of agricultural sustainability in developing countries: A review. Environ. Syst. Decis. 34:326–341

    Article  Google Scholar 

  54. Lampridi MG, Sørensen CG, Bochtis DD (2019) Agricultural Sustainability: A Review of Concepts and Methods. Sustainability 11:27. https://doi.org/10.3390/su11185120

    Article  Google Scholar 

  55. De Olde EM, Oudshoorn FW, Sørensen CAG, et al (2016) Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol Indic 66:391–404. https://doi.org/10.1016/j.ecolind.2016.01.047

    Article  Google Scholar 

  56. Yan MJ, Humphreys J, Holden NM (2011) An evaluation of life cycle assessment of European milk production. J Environ Manage 92:372–379. https://doi.org/10.1016/j.jenvman.2010.10.025

    Article  Google Scholar 

  57. Binder CR, Feola G, Steinberger JK (2010) Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 30:71–81

    Article  Google Scholar 

  58. Zhou K, Jensen AL, Bochtis D, et al (2020) Metric map generation for autonomous field operations. Agronomy 10. https://doi.org/10.3390/agronomy10010083

  59. Jensen MAF, Bochtis D, Sorensen CG, et al (2012) In-field and inter-field path planning for agricultural transport units. Comput Ind Eng 63:1054–1061

    Article  Google Scholar 

  60. Gonzalez-Amarillo CA, Corrales-Munoz JC, Mendoza-Moreno MA, et al (2018) An IoT-Based traceability system for greenhouse seedling crops. IEEE Access 6:67528–67535. https://doi.org/10.1109/ACCESS.2018.2877293

    Article  Google Scholar 

  61. Qian J, Fan B, Wu X, et al (2017) Comprehensive and quantifiable granularity: A novel model to measure agro-food traceability. Food Control 74:98–106. https://doi.org/10.1016/j.foodcont.2016.11.034

    Article  Google Scholar 

  62. Bochtis D, Sørensen CAG, Kateris D (2018) Operations management in agriculture. Academic Press. https://doi.org/10.1016/C2015-0-06290-6. ISBN: 978-0-12-809786-1

  63. Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Science (80-.). 327:828–831

    Article  Google Scholar 

  64. Robert PC (2002) Precision agriculture: A challenge for crop nutrition management. Plant Soil 247:143–149

    Article  Google Scholar 

  65. Zecca F (2019) The Use of Internet of Things for the Sustainability of the Agricultural Sector: The Case of Climate Smart Agriculture. Int J Civ Eng Technol 10:494–501

    Google Scholar 

  66. Walter A, Finger R, Huber R, Buchmann N (2017) Opinion: Smart farming is key to developing sustainable agriculture. Proc Natl Acad Sci 114:6148–6150. https://doi.org/10.1073/pnas.1707462114

    Article  Google Scholar 

  67. Rose DC, Chilvers J (2018) Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2018.00087

  68. Sørensen CAG, Kateris D, Bochtis D (2019) ICT Innovations and Smart Farming. In: Communications in Computer and Information Science

    Google Scholar 

  69. Eastwood C, Klerkx L, Ayre M, Dela Rue B (2019) Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. J Agric Environ Ethics 32:741–768. https://doi.org/10.1007/s10806-017-9704-5

    Article  Google Scholar 

  70. Agriculture 4.0 – The Future Of Farming Technology

    Google Scholar 

  71. Khan FA (2018) A Review an Hydroponic Greenhouse Cultivation for Sustainable Agriculture. Int J Agric Environ Food Sci 2:59–66. https://doi.org/10.31015/jaefs.18010

    Article  Google Scholar 

  72. Fernández JA, Orsini F, Baeza E, et al (2018) Current trends in protected cultivation in Mediterranean climates. Eur. J. Hortic. Sci. 83:294–305

    Article  Google Scholar 

  73. Chen P, Zhu G, Kim HJ, et al (2020) Comparative life cycle assessment of aquaponics and hydroponics in the Midwestern United States. J Clean Prod 275:122888. https://doi.org/10.1016/j.jclepro.2020.122888

    Article  Google Scholar 

  74. dos Santos JD, Lopes da Silva AL, da Luz Costa J, et al (2013) Development of a vinasse nutritive solution for hydroponics. J Environ Manage 114:8–12. https://doi.org/10.1016/j.jenvman.2012.10.045

    Article  Google Scholar 

  75. Shekarchi N, Shahnia F (2019) A comprehensive review of solar-driven desalination technologies for off-grid greenhouses. Int J Energy Res 43:1357–1386. https://doi.org/10.1002/er.4268

    Article  Google Scholar 

  76. Aznar-Sánchez JA, Velasco-Muñoz JF, López-Felices B, Román-Sánchez IM (2020) An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture. Int J Environ Res Public Health 17:664. https://doi.org/10.3390/ijerph17020664

    Article  Google Scholar 

  77. Aznar-Sánchez J, Belmonte-Ureña L, Velasco-Muñoz J, Valera D (2019) Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain. Int J Environ Res Public Health 16:898. https://doi.org/10.3390/ijerph16050898

    Article  Google Scholar 

  78. Cifuentes-Torres L, Mendoza-Espinosa LG, Correa-Reyes G, Daesslé LW (2020) Hydroponics with wastewater: a review of trends and opportunities. Water Environ J wej.12617. https://doi.org/10.1111/wej.12617

  79. Al-Chalabi M (2015) Vertical farming: Skyscraper sustainability? Sustain Cities Soc 18:74–77. https://doi.org/10.1016/j.scs.2015.06.003

    Article  Google Scholar 

  80. Bochtis D, Benos L, Lampridi M, et al (2020) Agricultural workforce crisis in light of the COVID-19 pandemic. Sustain 12. https://doi.org/10.3390/su12198212

  81. Pulighe G, Lupia F (2020) Food First: COVID-19 Outbreak and Cities Lockdown a Booster for a Wider Vision on Urban Agriculture. Sustainability 12:5012. https://doi.org/10.3390/su12125012

    Article  Google Scholar 

  82. Lal R (2020) Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Secur. 1–6

    Google Scholar 

  83. Köberl M, Müller H, Ramadan EM, Berg G (2011) Desert Farming Benefits from Microbial Potential in Arid Soils and Promotes Diversity and Plant Health. PLoS One 6:e24452. https://doi.org/10.1371/journal.pone.0024452

    Article  Google Scholar 

  84. Innovations in desert and drylands farming | Support to Investment | Food and Agriculture Organization of the United Nations

    Google Scholar 

  85. Sahara Forest Project

    Google Scholar 

  86. Seawater Farming | Mission 2014: Feeding the World

    Google Scholar 

  87. González FG, Rigalli N, Miranda PV, et al (2020) An Interdisciplinary Approach to Study the Performance of Second-generation Genetically Modified Crops in Field Trials: A Case Study With Soybean and Wheat Carrying the Sunflower HaHB4 Transcription Factor. Front Plant Sci 11:178. https://doi.org/10.3389/fpls.2020.00178

    Article  Google Scholar 

  88. Klümper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9. https://doi.org/10.1371/journal.pone.0111629

  89. Perry ED, Ciliberto F, Hennessy DA, Moschini GC (2016) Genetically engineered crops and pesticide use in U.S. maize and soybeans. Sci Adv 2:1600850. https://doi.org/10.1126/sciadv.1600850

    Article  Google Scholar 

  90. Kamle M, Kumar P, Patra JK, Bajpai VK (2017) Current perspectives on genetically modified crops and detection methods. 3 Biotech 7

    Google Scholar 

  91. Sun J, Peng Z, Zhou W, et al (2015) A Review on 3D Printing for Customized Food Fabrication. In: Procedia Manufacturing. Elsevier B.V., pp. 308–319

    Google Scholar 

  92. Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540. https://doi.org/10.1038/s41565-019-0439-5

    Article  Google Scholar 

  93. Srinivasan B, Kulshreshtha G (2020) Recent developments in food-based bioplastics production. In: Handbook of Environmental Chemistry. Springer Science and Business Media Deutschland GmbH, pp. 107–127

    Google Scholar 

  94. Fathallah F, Duraj V (2017) Small Changes Make Big Differences: The role of Ergonomics in Agriculture. Resour Mag 24:12–13

    Google Scholar 

  95. Ramahi AA, Fathallah FA (2006) Ergonomic evaluation of manual weeding practice and development of an ergonomic solution. In: Proceedings of the Human Factors and Ergonomics Society. pp. 1421–1425

    Google Scholar 

  96. Benos L, Bechar A, Bochtis D (2020) Safety and ergonomics in human-robot interactive agricultural operations. Biosyst Eng 200:55–72. https://doi.org/10.1016/j.biosystemseng.2020.09.009

    Article  Google Scholar 

  97. Deakin JM, Stevenson JM, Vail GR, Nelson JM (1994) The use of the Nordic questionnaire in an industrial setting: a case study. Appl Ergon 25:182–185. https://doi.org/10.1016/0003-6870(94)90017-5

    Article  Google Scholar 

  98. Kumar P, Chakrabarti D, Patel T, Chowdhuri A (2016) Work-related pains among the workers associated with pineapple peeling in small fruit processing units of North East India. Int J Ind Ergon 53:124–129. https://doi.org/10.1016/j.ergon.2015.11.006

    Article  Google Scholar 

  99. Schall MC, Fethke NB, Chen H, et al (2016) Accuracy and repeatability of an inertial measurement unit system for field-based occupational studies. Ergonomics 59:591–602. https://doi.org/10.1080/00140139.2015.1079335

    Article  Google Scholar 

  100. Merino G, da Silva L, Mattos D, et al (2019) Ergonomic evaluation of the musculoskeletal risks in a banana harvesting activity through qualitative and quantitative measures, with emphasis on motion capture (Xsens) and EMG. Int J Ind Ergon 69:80–89. https://doi.org/10.1016/j.ergon.2018.10.004

    Article  Google Scholar 

  101. Milosavljevic S, McBride DI, Bagheri N, et al (2011) Factors associated with quad bike loss of control events in agriculture. Int J Ind Ergon 41:317–321. https://doi.org/10.1016/j.ergon.2011.02.010

    Article  Google Scholar 

  102. Gialamas T, Gravalos I, Kateris D, et al (2016) Vibration analysis on driver’s seat of agricultural tractors during tillage tests. Spanish J Agric Res 14. https://doi.org/10.5424/sjar/2016144-9664

  103. Kociolek AM, Lang AE, Trask CM, et al (2018) Exploring head and neck vibration exposure from quad bike use in agriculture. Int J Ind Ergon 66:63–69. https://doi.org/10.1016/j.ergon.2018.02.009

    Article  Google Scholar 

  104. Ulrey BL, Fathallah FA (2012) Evaluation of a personal device in reducing the risk of low back disorders during stooped work. In: Work. pp. 2381–2383

    Google Scholar 

  105. Młotek M, Kuta Ł, Stopa R, Komarnicki P (2015) The Effect of Manual Harvesting of Fruit on the Health of Workers and the Quality of the Obtained Produce. Procedia Manuf 3:1712–1719. https://doi.org/10.1016/j.promfg.2015.07.494

    Article  Google Scholar 

  106. Kuta Ł, Stopa R, Szyjewicz D, Komarnicki P (2019) Determination of comfortable position for tractor Driver’s hands based on dynamic load. Int J Ind Ergon 74. https://doi.org/10.1016/j.ergon.2019.102866

  107. Dewi NS, Komatsuzaki M (2018) On-body personal assist suit for commercial farming: Effect on heart rate, EMG, trunk movements, and user acceptance during digging. Int J Ind Ergon 68:290–296. https://doi.org/10.1016/j.ergon.2018.08.013

    Article  Google Scholar 

  108. Ulrey BL, Fathallah FA (2013) Effect of a personal weight transfer device on muscle activities and joint flexions in the stooped posture. J Electromyogr Kinesiol 23(1):195–205. https://doi.org/10.1016/j.jelekin.2012.08.014

  109. Dewangan KN, Gogoi G, Owary C, Gorate DU (2010) Isometric muscle strength of male agricultural workers of India and the design of tractor controls. Int J Ind Ergon 40:484–491. https://doi.org/10.1016/j.ergon.2010.05.008

    Article  Google Scholar 

  110. Vallone M, Bono F, Quendler E, et al (2016) Risk exposure to vibration and noise in the use of agricultural track-laying tractors. Ann Agric Environ Med 23:591–597. https://doi.org/10.5604/12321966.1226852

    Article  Google Scholar 

  111. Romano E, Pirozzi M, Ferri M, et al (2019) The use of pressure mapping to assess the comfort of agricultural machinery seats. Int J Ind Ergon. https://doi.org/10.1016/j.ergon.2019.102835

  112. Loutridis S, Gialamas T, Gravalos I, et al (2011) A study on the effect of electronic engine speed regulator on agricultural tractor ride vibration behavior. J Terramechanics 48:139–147. https://doi.org/10.1016/j.jterra.2010.10.002

    Article  Google Scholar 

  113. Hudson DS, Copeland JL, Hepburn CG, Doan JB (2014) Stooped Postures Are Modified by Pretask Walking in a Simulated Weed-Pulling Task. J Agromedicine 19:27–34. https://doi.org/10.1080/1059924X.2013.865572

    Article  Google Scholar 

  114. Pinzke S, Lavesson L (2018) Ergonomic conditions in manual harvesting in swedish outdoor cultivation. Ann Agric Environ Med 25:481–487. https://doi.org/10.26444/aaem/93334

    Article  Google Scholar 

  115. Juntaracena K, Neubert MS, Puntumetakul R (2018) Effects of muddy terrain on lower extremity muscle activity and discomfort during the rice planting process. Int J Ind Ergon 66:187–193. https://doi.org/10.1016/j.ergon.2018.03.009

    Article  Google Scholar 

  116. Escamilla R (2009) Electromyographic Activity During Upper Extremity Sports. In: The Athlete’s Shoulder. Elsevier Inc., pp. 385–400

    Google Scholar 

  117. Çakmak B, Ergül E (2018) Interactions of personal and occupational risk factors on hand grip strength of winter pruners. Int J Ind Ergon 67:192–200. https://doi.org/10.1016/j.ergon.2018.05.002

    Article  Google Scholar 

  118. Gomez-Gil J, Javier Gomez-Gil F, Martin-De-Leon R (2014) The Influence of Tractor-Seat Height above the Ground on Lateral Vibrations. Sensors 14. https://doi.org/10.3390/s141019713

  119. Lazaridis S, Patikas DA, Bassa E, et al (2018) The acute effects of an intense stretch-shortening cycle fatigue protocol on the neuromechanical parameters of lower limbs in men and prepubescent boys. J Sports Sci 36:131–139. https://doi.org/10.1080/02640414.2017.1287932

    Article  Google Scholar 

  120. Benos L, Stanev D, Spyrou L, et al (2020) A review on finite element modelling and simulation of the anterior cruciate ligament reconstruction. Front Bioeng Biotechnol 8:967. https://doi.org/10.3389/FBIOE.2020.00967

    Article  Google Scholar 

  121. Dicks L V., Rose DC, Ang F, et al (2019) What agricultural practices are most likely to deliver “sustainable intensification” in the UK? Food Energy Secur 8:e00148. https://doi.org/10.1002/fes3.148

    Article  Google Scholar 

  122. Gunton RM, Firbank LG, Inman A, Winter DM (2016) How scalable is sustainable intensification? Nat Plants 2:16065. https://doi.org/10.1038/nplants.2016.65

    Article  Google Scholar 

  123. Gadanakis Y, Bennett R, Park J, Areal FJ (2015) Evaluating the Sustainable Intensification of arable farms. J Environ Manage 150:288–298. https://doi.org/10.1016/j.jenvman.2014.10.005

    Article  Google Scholar 

  124. Janker J, Mann S, Rist S (2019) Social sustainability in agriculture – A system-based framework. J Rural Stud 65:32–42. https://doi.org/10.1016/j.jrurstud.2018.12.010

    Article  Google Scholar 

  125. Wolsko C, Marino E, Doherty TJ, et al (2016) Systems of access: A multidisciplinary strategy for assessing the social dimensions of sustainability. Sustain Sci Pract Policy 12. https://doi.org/10.1080/15487733.2016.11908156

  126. Rose DC, Wheeler R, Winter M, et al (2021) Agriculture 4.0: Making it work for people, production, and the planet. Land use policy 100:104933. https://doi.org/10.1016/j.landusepol.2020.104933

    Article  Google Scholar 

  127. Barnes AP, Soto I, Eory V, et al (2019) Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land use policy 80:163–174. https://doi.org/10.1016/j.landusepol.2018.10.004

    Article  Google Scholar 

  128. Eastwood C, Ayre M, Nettle R, Dela Rue B (2019) Making sense in the cloud: Farm advisory services in a smart farming future. NJAS - Wageningen J Life Sci 90–91:100298. https://doi.org/10.1016/j.njas.2019.04.004

    Article  Google Scholar 

  129. Autor DH, Levy F, Murnane RJ (2003) The Skill Content of Recent Technological Change: An Empirical Exploration. Q J Econ 118:1279–1333. https://doi.org/10.1162/003355303322552801

    Article  MATH  Google Scholar 

  130. Heyman F (2016) Job polarization, job tasks and the role of firms. Econ Lett 145:246–251. https://doi.org/10.1016/J.ECONLET.2016.06.032

    Article  Google Scholar 

  131. Marinoudi V, Sørensen CG, Pearson S, Bochtis D (2019) Robotics and labour in agriculture. A context consideration. Biosyst Eng. https://doi.org/10.1016/j.biosystemseng.2019.06.013

  132. Paustian M, Theuvsen L (2017) Adoption of precision agriculture technologies by German crop farmers. Precis Agric 18:701–716. https://doi.org/10.1007/s11119-016-9482-5

    Article  Google Scholar 

  133. Liu T, Bruins R, Heberling M (2018) Factors Influencing Farmers’ Adoption of Best Management Practices: A Review and Synthesis. Sustainability 10:432. https://doi.org/10.3390/su10020432

    Article  Google Scholar 

  134. Sansel Tandogan N, Gedikoglu H (2020) Socio-Economic Dimensions of Adoption of Conservation Practices: What Is Needed to Be Done? In: Organic Agriculture. IntechOpen

    Google Scholar 

  135. Kassie M, Jaleta M, Shiferaw B, et al (2013) Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol Forecast Soc Change 80:525–540. https://doi.org/10.1016/j.techfore.2012.08.007

    Article  Google Scholar 

  136. Wollni M, Andersson C (2014) Spatial patterns of organic agriculture adoption: Evidence from Honduras. Ecol Econ 97:120–128. https://doi.org/10.1016/j.ecolecon.2013.11.010

    Article  Google Scholar 

  137. Deressa TT, Hassan RM, Ringler C, et al (2009) Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob Environ Chang 19:248–255. https://doi.org/10.1016/j.gloenvcha.2009.01.002

    Article  Google Scholar 

  138. Dinar A, Yaron D (1992) Adoption and abandonment of irrigation technologies. Agric Econ 6:315–332. https://doi.org/10.1016/0169-5150(92)90008-M

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lampridi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lampridi, M., Marinoudi, V., Benos, L., Pearson, S., Bochtis, D.D., Pardalos, P.M. (2021). Towards Sustainable Agriculture: Challenges from the Transition to the New Digital Era. In: Bochtis, D.D., Pearson, S., Lampridi, M., Marinoudi, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme IV: Actions. Springer Optimization and Its Applications, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-030-84156-0_1

Download citation

Publish with us

Policies and ethics