Skip to main content

Zephyrus: Grain Aeration Strategy Based on the Prediction of Temperature and Moisture Fronts

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme III: Decision

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 184))

Abstract

Grain aeration is an established low-cost and chemical-free technology for maintaining favorable storage conditions for the safe preservation of grain quality. Currently, the most efficient controllers are based on simulations of the aeration process. They frequently depend on complex programming codes, which limit their implementation for professionals who work in the postharvest sector, resulting in longer computing times. In this work, a new aeration control strategy, called Zephyrus, was proposed based on the prediction of speeds and changes of temperature and moisture fronts while air is passed through a grain bulk. The proposed controller was tested in a pilot study, resulting in a grain cooling of 11.4 °C with a moisture content variation of 0.6%, also maintaining an average temperature gradient of 2.6 °C throughout the grain bulk. Along the 6 months of study, the energy required for cooling 0.42 t of grain was 0.06 kWh t−1 °C−1 (0.30 kWh t−1). The proposed control strategy was also compared with two other controllers by using simulation procedures. Results showed that Zephyrus was more efficient to achieve grain cooling for 56% of the simulated scenarios. When considering the power consumption, Zephyrus required lower electrical energy per mass of cooled grain in 44.5% of the simulated scenarios. Zephyrus control strategy can be used with different aeration system designs, automatically adjusting its set points according to the geographic region and season.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serna-Saldivar, S. O., & García-Lara, S. (2016). Cereals: Storage. Encyclopedia of Food and Health, 712–717.

    Google Scholar 

  2. Navarro, S., Noyes, R. T., Casada, M., & Arthir, F. H. (2012). Grain aeration. In D. W. Hagstrum et al. (Eds.), Stored product protection (pp. 121–134). Kansas State University.

    Google Scholar 

  3. Navarro, S., & Noyes, R. T. (2001). The mechanics and physics of modern grain aeration management. CRC Press.

    Book  Google Scholar 

  4. Edde, P. A. (2012). A review of the biology and control of Rhyzopertha dominica(F.) the lesser grain borer. Journal of Stored Products Research, 48, 1–18. https://doi.org/10.1016/j.jspr.2011.08.007

    Article  Google Scholar 

  5. Neme, K., & Mohammed, A. (2017). Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control, 78, 412–425. https://doi.org/10.1016/j.foodcont.2017.03.012

    Article  Google Scholar 

  6. Beckett, S. J. (2011). Insect and mite control by manipulating temperature and moisture before and during chemical-free storage. Journal of Stored Products Research, 47, 284–292. https://doi.org/10.1016/j.jspr.2011.08.002

    Article  Google Scholar 

  7. Nawi, N. M., Chen, G., & Zare, D. (2010). Economics of using aerated storage to minimize the impact of weather damage during wheat harvesting. Biosystems Engineering, 105(3), 323–331. https://doi.org/10.1016/j.biosystemseng.2009.12.001

    Article  Google Scholar 

  8. Steidle Neto, A. J., & Lopes, D. C. (2015). Thermistor based system for grain aeration monitoring and control. Computers and Electronics in Agriculture, 116, 45–54. https://doi.org/10.1016/j.compag.2015.06.004

    Article  Google Scholar 

  9. Bradna, J., Šimon, J., Hájek, D., & Vejchar, D. (2018). The impact of weather conditions on microclimate in storage facilities. Agronomy Research, 16(4), 1580–1589. https://doi.org/10.15159/ar.18.178

    Article  Google Scholar 

  10. Coradi, P. C., Oliveira, M. B., Oliveira Carneiro, L., Souza, G. A. C., Elias, M. C., Brackmann, A., & Teodoro, P. E. (2020). Technological and sustainable strategies for reducing losses and maintaining the quality of soybean grains in real production scale storage units. Journal of Stored Products Research, 87, 101624. https://doi.org/10.1016/j.jspr.2020.101624

    Article  Google Scholar 

  11. Lopes, D. C., & Steidle Neto, A. J. (2019). Effects of climate change on the aeration of stored beans in Minas Gerais State, Brazil. Biosystems Engineering, 188, 155–164.

    Article  Google Scholar 

  12. Morales-Quiro, A., Campabadal, C. A., Maier, D. E., Lazzari, S., Lazzari, F., Cook, S., & Phillips, T. W. (2016). Chilling aeration to control pests and maintain grain quality during in-bin storage of wheat in Kansas. In ASABE annual international meeting, American Society of Agricultural and Biological Engineers, pp 1–9.

    Google Scholar 

  13. Arthur, F. H., Morrison, W. R., & Trdan, S. (2020). Feasibility of using aeration to cool wheat stored in Slovenia: A predictive modeling approach using historical weather data. Applied Sciences, 10(17), 6066. https://doi.org/10.3390/app10176066. www.mdpi.com/journal/applsci

    Article  Google Scholar 

  14. Li, X., Han, Z., Lin, Q., Wu, Z., Chen, L., & Zhang, Q. (2020). Smart cooling-aeration guided by aeration window model for paddy stored in concrete silos in a depot of Guangzhou, China. Computers and Electronics in Agriculture, 173, 105452. https://doi.org/10.1016/j.compag.2020.105452

    Article  Google Scholar 

  15. Onibonoje, M. O., Kehinde, L. O., & Owolarafe, O. K. (2015). A wireless sensor network for controlling the effect of the moisture content in stored maize grains. International Journal of Engineering Research & Technology, 4(10), 141–147.

    Article  Google Scholar 

  16. Singh, C. B., & Fielke, J. M. (2017). Recent developments in stored grain sensors, monitoring and management technology. IEEE Instrumentation & Measurement Magazine, 1094–6969.

    Google Scholar 

  17. Kaliyan, N., Morey, R. V., Wilcke, W. F., Carrilo, M. A., & Cannon, C. A. (2007). Low-temperature aeration to control Indianmeal moth, Plodia interpunctella (Hubner), in stored grain in twelve locations in the United States: A simulation study. Journal of Stored Products Research, 43, 177–192. https://doi.org/10.1016/j.jspr.2006.04.004

    Article  Google Scholar 

  18. Charles, A. (2006). Ambient air temperature aeration controller. Doctoral dissertation, University of Southern Queensland, Australia.

    Google Scholar 

  19. Lopes, D. C., Martins, J. H., Lacerda Filho, A. F., Melo, E. C., Monteiro, P. M. B., & Queiroz, D. M. (2008). Aeration strategy for controlling grain storage based on simulation and on real data acquisition. Computers and Electronics in Agriculture, 63, 140–146. https://doi.org/10.1016/j.compag.2008.02.002

    Article  Google Scholar 

  20. Sun, L., & Zhu, Z. S. (2013). A Bayesian network model for aeration management of stored grain. In Applied mechanics and materials (pp. 4751–4756). Trans Tech Publications.

    Google Scholar 

  21. Thorpe, G. R. (2008). The application of computational fluid dynamics codes to simulate heat and moisture transfer in stored grains. Journal of Stored Products Research, 44, 21–31. https://doi.org/10.1016/j.jspr.2007.07.001

    Article  Google Scholar 

  22. Nwaizu, C. C. (2013). Characterizing airflow paths in grain bulks. Dissertation. University of Manitoba, Canada.

    Google Scholar 

  23. Hunter, A. (1988). Temperature and moisture front movement in an aerated seed bulk. Journal of Agricultural Engineering Research, 40, 113–127.

    Article  Google Scholar 

  24. Sutherland, J. W., Banks, P. J., & Griffith, H. J. (1971). Equilibrium heat and moisture transfer in air flow through grain. Journal of Agricultural Engineering Research, 16(4), 368–386.

    Article  Google Scholar 

  25. Lopes, D. C., Steidle Neto, A. J., & Santiago, J. K. (2014). Comparison of equilibrium and logarithmic models for grain drying. Biosystems Engineering, 118, 105–114.

    Article  Google Scholar 

  26. Melo, E. C., Lopes, D. C., & Corrêa, P. C. (2004). GRAPSI: Programa computacional para o cálculo das propriedades psicrométricas do ar. Engenharia na Agricultura, 12(2), 154–162.

    Google Scholar 

  27. Lopes, D. C., Martins, J. H., Monteiro, P. M. B., & Lacerda Filho, A. F. (2010). Effects of different control strategies on grain storage in tropical and subtropical regions. Ceres, 57(2), 157–167.

    Article  Google Scholar 

  28. Mohapatra, D., Kumar, S., Kotwaliwale, N., & Singh, K. K. (2017). Critical factors responsible for fungi growth in stored food grains and non-Chemical approaches for their control. Industrial Crops and Products, 108, 162–182. https://doi.org/10.1016/j.indcrop.2017.06.039

    Article  Google Scholar 

  29. Taruvinga, C., Mejia, D., & Alvarez, J. S. (2014). Appropriate seed and grain storage systems for small-scale farmers: Key practices for DRR implements. FAO. Retrieved Accessed Dec 8, 2016, from http://www.fao.org.br.

  30. Navarro, S. (2012). Advanced grain storage methods for quality preservation and insect control based on aerated or hermetic storage and IPM. Journal of Agricultural Engineering, 49(1), 13–20.

    Google Scholar 

  31. Martins, J. H., Mota, A. M., & Fonseca, J. A. (2001). Simulation of an automatic controller for stored grain aeration systems. Engenharia na Agricultura, 9(1), 55–70.

    Google Scholar 

  32. Mrema, G. C., Gumbe, L. O., Chepete, H. J., & Agullo, J. O. (2011). Grain crop drying, handling and storage. In Rural structures in the tropics: Design and development (pp. 363–411). FAO.

    Google Scholar 

  33. Jian, F., & Jayas, D. S. (2012). Temperature monitoring. In D. W. Hagstrum et al. (Eds.), Stored product protection (pp. 271–280). Kansas State University.

    Google Scholar 

  34. Thorpe, G. R. (1997). Modelling ecosystems in ventilated conical bottomed farm grain silos. Ecological Modelling, 94, 255–286.

    Article  Google Scholar 

  35. Lopes, D. C., Martins, J. H., Melo, E. C., & Monteiro, P. M. B. (2006). Aeration simulation of stored grain under variable air ambient conditions. Postharvest Biology and Technology, 42, 115–120. https://doi.org/10.1016/j.postharvbio.2006.05.007

    Article  Google Scholar 

  36. Thorpe, G. R. (2001). Physical basis of aeration. In S. Navarro & R. T. Noyes (Eds.), The mechanics and physics of modern grain aeration management (pp. 125–194). CRC Press.

    Google Scholar 

  37. Jayas, D. S., & White, N. D. G. (2003). Storage and drying of grain in Canada: Low cost approaches. Food Control, 14, 255–261. https://doi.org/10.1016/S0956-7135(03)00014-8

    Article  Google Scholar 

  38. Conab. (2018). Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos, vol 6, Safra 2018/19, Brazil.

    Google Scholar 

  39. Inmet. (2018). Banco de dados meteorológicos para ensino e pequisa (BDMEP). Reftrieved October 9, 2018, from http://www.inmet.gov.br/projetos/rede/pesquisa/.

  40. Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  41. Ferreira, D. F. (2011). Sisvar: A computer statistical analysis system. Ciên Agrotec, 35(6), 1039–1042.

    Article  Google Scholar 

  42. Collins, L. E., & Conyers, S. T. (2009). Moisture content gradient and ventilation in stored wheat affect movement and distribution of Oryzaephillus surinamensis and have implications for pest monitoring. Journal of Stored Products Research, 45, 32–39. https://doi.org/10.1016/j.jspr.2008.07.003

    Article  Google Scholar 

  43. Sanderson, D. B., Muir, W. E., & Sinhá, R. N. (1988). Moisture contents within bulks of wheat ventilated with near-ambient air: Experimental results. Journal of Agricultural Engineering Research, 40, 45–55.

    Article  Google Scholar 

  44. Foster, G. H. (1967). Moisture changes during aeration of grain. Transactions ASAE, 10(3), 344–351.

    Article  Google Scholar 

  45. Weinberg, Z. G., Yan, Y., Chen, Y., Finkelman, S., Ashbell, G., & Navarro, S. (2008). The effect of moisture level on high-moisture maize (Zea mays L.) under hermetic storage conditions—In vitro studies. Journal of Stored Products Research, 44, 136–144. https://doi.org/10.1016/j.jspr.2007.08.006

    Article  Google Scholar 

  46. Antunes, A. M., Devilla, I. A., Borges Neto, A. C., Alves, B. G. X., Alves, G. R., & Santos, M. M. (2016). Development of an automated system of aeration for grain storage. African Journal of Agricultural Research, 11(43), 4293–4303. https://doi.org/10.5897/AJAR2016.11538

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the FAPEMIG/Brazil (CAG—APQ-01389-15) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopes, D.C., Steidle Neto, A.J. (2022). Zephyrus: Grain Aeration Strategy Based on the Prediction of Temperature and Moisture Fronts. In: Bochtis, D.D., Sørensen, C.G., Fountas, S., Moysiadis, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme III: Decision. Springer Optimization and Its Applications, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-030-84152-2_9

Download citation

Publish with us

Policies and ethics