Skip to main content

Decision-Making and Decision Support System for a Successful Weed Management

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme III: Decision

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 184))

  • 428 Accesses

Abstract

The introduction of Decision Support Systems (DSSs) in weed management poses an attractive option for creating improved and more environmentally friendly control strategies. The aim of the current study was to present key factors affecting decision-making process that need to be taken into account before developing a DSS in terms of weed management. First, attention should be paid to the effects of environmental factors and agronomic practices on weed emergence and the composition of the weed flora in an agricultural field. If weed emergence and timing of weed emergence could be predicted, then a DSS could make accurate suggestions for weed control. Secondly, to develop any weed management program, it is essential to have a deep understanding of weed biology and ecology. The biological traits of weeds, weed growth, the impact of weed competition during crucial growth stages for the crop should be estimated in order to optimize decision-making process. Moreover, a better understanding of seed production and weed seedbank dynamics into the soil would help experts develop DSSs able to provide management strategies also in the long-term period. However, these objectives are quite complex and need to be addressed in the near future. Furthermore, carrying out field surveys, hosting workshops, and group meetings in order to communicate with farmers and help them familiarize with the adoption of DSS methodologies. This is a vital step for persuading farmers to trust the use DSSs for the management of weeds in their fields. Further research and extended experimentation are needed in order to develop effective DSSs in terms of weed management under different soil and climatic conditions, always according to the special needs of each farmer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fountas, S., Carli, G., Sørensen, C. G., et al. (2015). Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115, 40–50. https://doi.org/10.1016/j.compag.2015.05.011

    Article  Google Scholar 

  2. Marakas, G. M. (2003). Decision support systems in the 21st century (Vol. 134, 2nd ed.). Prentice Hall.

    Google Scholar 

  3. Sprague RH, Carlson ED (1982) Building effective decision support systems. Prentice Hall, .

    Google Scholar 

  4. Rupnik, R., Kukar, M., Vračar, P., Košir, D., Pevec, D., & Bosnić, Z. (2018). AgroDSS: A decision support system for agriculture and farming. Computers and Electronics in Agriculture, 161, 260–271. https://doi.org/10.1016/j.compag.2018.04.001

    Article  Google Scholar 

  5. Adebayo, S., Ogunti, E. O., Akingbade, F. K., & Oladimeji, O. A. (2018). Review of decision support system using mobile applications in the provision of day to day information about farm status for improved crop yield. Periodicals of Engineering and Natural Sciences, 6, 89–99. https://doi.org/10.21533/pen.v6i2.183

    Article  Google Scholar 

  6. Rains, G. C., Olson, D. M., & Lewis, W. J. (2011). Redirecting technology to support sustainable farm management practices. Agricultural Systems, 104, 365–370. https://doi.org/10.1016/j.agsy.2010.12.008

    Article  Google Scholar 

  7. Agrios, G. N. (2005). Plant pathology (5th ed.). Academic Press.

    Google Scholar 

  8. Goffart, J. P., Olivier, M., & Destain, J. P. (2005). Presentation of a Decision Support System (DSS) for nitrogen management in potato production to improve the use of resources. In A. J. Haverkort & P. C. Struik (Eds.), Potato in progress: Science meets practice (pp. 134–142). Wageningen Academic Publishers.

    Google Scholar 

  9. Rydahl, P. (2003). A web-based decision support system for integrated management of weeds in cereals and sugarbeet. EPPO Bull, 33, 455–460. https://doi.org/10.1111/j.1365-2338.2003.00679.x

    Article  Google Scholar 

  10. Sciarretta, A., Tabilio, M. R., Amore, A., et al. (2019). Defining and evaluating a Decision Support System (DSS) for the precise pest management of the Mediterranean fruit fly, Ceratitis capitata, at the farm level. Agronomy, 9, 608. https://doi.org/10.3390/agronomy9100608

    Article  Google Scholar 

  11. Small, I. M., Joseph, L., & Fry, W. E. (2015). Development and implementation of the BlightPro decision support system for potato and tomato late blight management. Computers and Electronics in Agriculture, 115, 57–65. https://doi.org/10.1016/j.compag.2015.05.010

    Article  Google Scholar 

  12. Jørgensen, L. N., Noe, E., Langvad, A. M., Jensen, J. E., Ørum, J. E., & Rydahl, P. (2007). Decision support systems: Barriers and farmers’ need for support. EPPO Bull, 37, 374–377. https://doi.org/10.1111/j.1365-2338.2007.01145.x

    Article  Google Scholar 

  13. Kuflik, T., Pertot, I., Moskovitch, R., Zasso, R., Pellegrini, E., & Gessler, C. (2008). Optimization of Fire blight scouting with a decision support system based on infection risk. Computers and Electronics in Agriculture, 62, 118–127. https://doi.org/10.1016/j.compag.2007.12.003

    Article  Google Scholar 

  14. Parsons, D. J., Benjamin, L. R., Clarke, J., Ginsburg, D., Mayes, A., Milne, A. E., & Wilkinson, D. J. (2009). Weed Manager—A model-based decision support system for weed management in arable crops. Computers and Electronics in Agriculture, 65, 155–167. https://doi.org/10.1016/j.compag.2008.08.007

    Article  Google Scholar 

  15. Travis, J. W., & Latin, R. X. (1991). Development, implementation and adoption of expert systems. Annual Review of Phytopathology, 29, 343–360.

    Article  Google Scholar 

  16. Keating, B. A., & McCown, R. L. (2001). Advances in farming systems analysis and intervention. Agricultural Systems, 70(2–3), 555–579. https://doi.org/10.1016/S0308-521X(01)00059-2

    Article  Google Scholar 

  17. Sonka, S. T., Bauer, M. E., Cherry E. T., et al. (1997) Precision agriculture in the 21st century. In Geospatial and information technologies in crop management. Committee on assessing crop yield: Site-specific farming, information systems, and research opportunities, board of agriculture, National Research Council. National Academy Press, Washington.

    Google Scholar 

  18. Seem, R. C., & Russo, J. M. (1984). Simple decision aids for practical control of pests. Plant Disease, 68, 656–660.

    Article  Google Scholar 

  19. Zimdahl, R. L. (2018). Fundamentals of weed science (5th ed.). Academic Press.

    Google Scholar 

  20. Oerke, E. C., & Dehne, H. W. (2004). Safeguarding production-losses in major crops and the role of crop protection. Crop Protection, 23, 275–285. https://doi.org/10.1016/j.cropro.2003.10.001

    Article  Google Scholar 

  21. Holst, N., Rasmussen, I. A., & Bastiaans, L. (2007). Field weed population dynamics: A review of model approaches and applications. Weed Research, 47, 1–14. https://doi.org/10.1111/j.1365-3180.2007.00534.x

    Article  Google Scholar 

  22. Berti, A., & Zanin, G. (1997). GESTINF: A decision model for post-emergence weed management in soybean (Glycine max (L.) Merr.). Crop Protection, 16, 109–116. https://doi.org/10.1016/S0261-2194(96)00088-9

    Article  Google Scholar 

  23. Neeser, C., Dille, J. A., Krishnan, G., Mortensen, D. A., Rawlinson, J. T., Martin, A. R., & Bills, L. B. (2004). WeedSOFT®: A weed management decision support system. Weed Science, 52, 115–122. https://doi.org/10.1614/P2002-154

    Article  Google Scholar 

  24. Inovia, T., Acta, Agrosup Dijon, Arvalis, Fnams, Inra, Itab, Itb. (2020). Infloweb - Connaître et gérer la flore adventice. Retrieved October 13, 2020, from http://www.infloweb.fr/.

  25. Rydahl, P., Bojer, O. M., Jørgensen, R. N., Dyrmann, M., Andersen, P., Jensen, N. P., & Sorensen, M. (2018). Spatial variability of optimized herbicide mixtures and dosages. In: Proceedings of the 14th international conference on precision agriculture. international society of precision agriculture, Montreal, QC, 24–27 June 2018.

    Google Scholar 

  26. Kanatas, P., Travlos, I. S., Gazoulis, I., Tataridas, A., Tsekoura, A., & Antonopoulos, N. (2020). Benefits and Limitations of Decision Support Systems (DSS) with a Special Emphasis on Weeds. Agron, 10, 548. https://doi.org/10.3390/agronomy10040548

    Article  Google Scholar 

  27. Brown, R. B., & Noble, S. D. (2005). Site-specific weed management: Sensing requirements—What do we need to see? Weed Science, 53, 252–258. https://doi.org/10.1614/WS-04-068R1

    Article  Google Scholar 

  28. Brown RB, Steckler PGA, Anderson GW (1994) Remote sensing for identification of weeds in no-till corn. Trans Am Soc Agric Eng 37:297–302. doi:https://doi.org/10.13031/2013.28084.

  29. Lamb, D. W., & Weedon, M. (1998). Evaluating the accuracy of mapping weeds in fallow fields using airborne digital imaging. Panicum effusum in oilseed rape stubble. Weed Research, 38, 443–451. https://doi.org/10.1046/j.1365-3180.1998.00112.x

    Article  Google Scholar 

  30. Macé, K., Morlon, P., Munier-Jolain, N., & Quéré, L. (2007). Time scales as a factor in decision-making by French farmers on weed management in annual crops. Agricultural Systems, 93, 115–142.

    Article  Google Scholar 

  31. Colas, F., Cordeau, S., Granger, S., et al. (2020). Co-development of a decision support system for integrated weed management: Contribution from future users. European Journal of Agronomy, 114, 126010. https://doi.org/10.1016/j.eja.2020.126010

    Article  Google Scholar 

  32. Masin, R., Vasileiadis, V. P., Loddo, D., Otto, S., & Zanin, G. (2011). A single-time survey method to predict the daily weed density for weed control decision-making. Weed Science, 59, 270–275. https://doi.org/10.1614/ws-d-10-00148.1

    Article  Google Scholar 

  33. Pagnoncelli, F. D. B., Trezzi, M. M., & Gonzalez-Andujar, J. L. (2020). Modeling the Population dynamics and management of Italian ryegrass under two climatic scenarios in Brazil. Plants, 9, 325. https://doi.org/10.3390/plants9030325

    Article  Google Scholar 

  34. Sousa-Ortega, C., Chamber, E., Urbano, J. M., et al. (2020). Should emergence models for Lolium rigidum be changed throughout climatic conditions? The case of Spain. Crop Protection, 128, 105012. https://doi.org/10.1016/j.cropro.2019.105012

    Article  Google Scholar 

  35. Wright, K. J., & Wilson, B. J. (1992). Effects of nitrogen fertiliser on competition and seed production of Avena fatua and Galium aparine in winter wheat Nitrate and Farming Systems. Aspects of Applied Biology, 30, 381–386. https://www.cabdirect.org/cabdirect/abstract/19932328159.

    Google Scholar 

  36. Goggin, D. E., Powles, S. B., & Steadman, K. J. (2012). Understanding Lolium rigidum seeds: The key to managing a problem weed? Agron, 2, 222–239. https://doi.org/10.3390/agronomy2030222

    Article  Google Scholar 

  37. Norsworthy, J. K., Ward, S. M., Shaw, D. R., et al. (2012). Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Science, 60, 31–62. https://doi.org/10.1614/WS-D-11-00155.1

    Article  Google Scholar 

  38. Benech-Arnold, R. L., Sánchez, R. A., Forcella, F., Kruk, B. C., & Ghersa, C. M. (2000). Environmental control of dormancy in weed seed soil banks. Field Crops Research, 67, 105–122. https://doi.org/10.1016/S0378-4290(00)00087-3

    Article  Google Scholar 

  39. Baskin, C. C., & Baskin, J. M. (1998). Seeds: Ecology, biogeography, and, evolution of dormancy and germination. Academic Press.

    Google Scholar 

  40. Karssen, C. M. (1982). Seasonal patterns of dormancy in weed seeds. In A. Khan (Ed.), The physiology and biochemistry of seed development, dormancy and germination (pp. 243–270). Elsevier Biomedical Press.

    Google Scholar 

  41. Thomas, A. G., Derksen, D. A., Blackshaw, R. E., et al. (2017). A multistudy approach to understanding weed population shifts in medium- to long-term tillage systems. Weed Science, 52, 874–880. https://doi.org/10.1614/WS-04-010R1

    Article  Google Scholar 

  42. Lack, S., Parchami, P., & Modhej, A. (2011). Study the effects of nitrogen levels and wild oat (Avena ludoviciana L.) densities on grain yield and agronomic nitrogen efficiency of wheat (Triticum aestivum L.). Advances in Environmental Biology, 5, 2445–2451. http://www.aensionline.com/aeb/2011/2445-2450.pdf/

    Google Scholar 

  43. Blackshaw, R. E., & Brandt, R. N. (2009). Phosphorus fertilizer effects on the competition between wheat and several weed species. Weed Biology and Management, 9, 46–53. https://doi.org/10.1111/j.1445-6664.2008.00317.x

    Article  Google Scholar 

  44. Nandula, V. K., Eubank, T. W., Poston, D. H., Koger, C. H., & Reddy, K. N. (2006). Factors affecting germination of horseweed (Conyza canadensis). Weed Science, 54, 898–902. https://doi.org/10.1614/WS-06-006R2.1

    Article  Google Scholar 

  45. Swain, A. J., Hughes, Z. S., Cook, S. K., & Moss, S. R. (2006). Quantifying the dormancy of Alopecurus myosuroides seeds produced by plants exposed to different soil moisture and temperature regimes. Weed Research, 46, 470–479. https://doi.org/10.1111/j.1365-3180.2006.00532.x

    Article  Google Scholar 

  46. Masin, R., Zuin, M. C., Archer, D. W., Forcella, F., & Zanin, G. (2005). WeedTurf: A predictive model to aid control of annual summer weeds in turf. Weed Science, 53, 193–201. https://doi.org/10.1614/WS-04-066R1

    Article  Google Scholar 

  47. Crawley, M. J. (2004). Timing of disturbance and coexistence in a species rich ruderal plant community. Ecology, 85, 3277–3288. https://doi.org/10.1890/03-0804

    Article  Google Scholar 

  48. Milberg, P., Andersson, L., & Thompson, K. (2000). Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Science Research, 10, 99–104. https://doi.org/10.1017/S0960258500000118

    Article  Google Scholar 

  49. Forcella, F. (1998). Real-time assessment of seed dormancy and seedling growth for weed management. Seed Science Research, 8, 201–210. https://doi.org/10.1017/S0960258500004116

    Article  Google Scholar 

  50. Benech-Arnold, R. L., Ghersa, C. M., Sánchez, R. A., & Insausti, P. (1990). A mathematical model to predict Sorghum halepense (L.) Pers. seedling emergence in relation to soil temperature. Weed Research, 30, 91–99. https://doi.org/10.1111/j.1365-3180.1990.tb01691.x

    Article  Google Scholar 

  51. Murdoch, A. J., Roberts, E. H., & Goedert, C. O. (1989). A model for germination responses to alternating temperatures. Annals of Botany, 63, 97–111. https://doi.org/10.1093/oxfordjournals.aob.a087733

    Article  Google Scholar 

  52. Evans, C. E., & Etherington, J. R. (1990). The effect of soil water potential on seed germination of some British plants. The New Phytologist, 115, 539–548. https://doi.org/10.1111/j.1469-8137.1990.tb00482.x

    Article  Google Scholar 

  53. Travlos, I., Gazoulis, I., Kanatas, P., Tsekoura, A., Zannopoulos, S., & Papastylianou, P. (2020). Key factors affecting weed seeds’ germination, weed emergence and their possible role for the efficacy of false seedbed technique as weed management practice. Frontiers in Agronomy, 2, 1. https://doi.org/10.3389/fagro.2020.00001

    Article  Google Scholar 

  54. Forcella, F., Benech Arnold, R. L., Sanchez, R., & Ghersa, C. M. (2000). Modeling seedling emergence. Field Crops Res, 67, 123–139. https://doi.org/10.1016/S0378-4290(00)00088-5

    Article  Google Scholar 

  55. Grundy, A. C. (2003). Predicting weed emergence: A review of approaches and future challenges. Weed Research, 43, 1–11. https://doi.org/10.1046/j.1365-3180.2003.00317.x

    Article  Google Scholar 

  56. Masin, R., Cacciatori, G., Zuin, M. C., & Zanin, G. (2010). AlertInf: Emergence predictive model for weed control in maize in Veneto. Italian Journal of Agrometeorology, 1, 5–9. http://agrometeorologia.it/documenti/Rivista2010_1/AIAM%201-2010_pag5.pdf

    Google Scholar 

  57. Finch-Savage, W. E., Steckel, J. R. A., & Phelps, K. (1998). Germination and post-germination growth to carrot seedling emergence: Predictive threshold models and sources of variation between sowing occasions. The New Phytologist, 139, 505–516. https://doi.org/10.1046/j.1469-8137.1998.00208.x

    Article  Google Scholar 

  58. Lu, P., Sang, W., & Ma, K. (2006). Effects of environmental factors on germination and emergence of Crofton weed (Eupatorium adenophorum). Weed Science, 54, 452–457. https://doi.org/10.1614/WS-05-174R1.1

    Article  Google Scholar 

  59. Boyd, N., & Van Acker, R. (2004). Seed germination of common weed species as affected by oxygen concentration, light, and osmotic potential. Weed Science, 52, 589–596. https://doi.org/10.1614/WS-03-15R2

    Article  Google Scholar 

  60. Derkx, M. P. M., & Karssen, C. M. (1994). Are seasonal dormancy patterns in Arabidopsis thaliana regulated by changes in seed sensitivity to light, nitrate and gibberellin? Annals of Botany, 73, 129–136. https://doi.org/10.1006/anbo.1994.1015

    Article  Google Scholar 

  61. Travlos, I. S., Cheimona, N., Roussis, I., & Bilalis, D. J. (2018). Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Frontiers in Environmental Science, 6, 11. https://doi.org/10.3389/fenvs.2018.00011

    Article  Google Scholar 

  62. Merot, A., Bergez, J. E., Capillon, A., & Wery, J. (2008). Analysing farming practices to develop a numerical, operational model of farmers’ decision-making processes: An irrigated hay cropping system in France. Agricultural Systems, 98, 108–118. https://doi.org/10.1016/j.agsy.2008.05.001

    Article  Google Scholar 

  63. Nichols, V., Verhulst, N., Cox, R., & Govaerts, B. (2015). Weed dynamics and conservation agriculture principles: A review. Field Crops Research, 183, 56–68. https://doi.org/10.1016/j.fcr.2015.07.012

    Article  Google Scholar 

  64. Smith, R. G. (2006). Timing of tillage is an important filter on the assembly of weed communities. Weed Science, 54, 705–712. https://doi.org/10.1614/WS-05-177R1.1

    Article  Google Scholar 

  65. Armengot, L., Blanco-Moreno, J., Bàrberi, P., et al. (2016). Tillage as a driver of change in weed communities: A functional perspective. Agriculture, Ecosystems and Environment, 222, 276–285. https://doi.org/10.1016/j.agee.2016.02.021

    Article  Google Scholar 

  66. Hyvönen, T., Ketoja, E., Salonen, J., Jalli, H., & Tiainen, J. (2003). Weed species diversity and community composition in organic and conventional cropping of spring cereals. Agriculture, Ecosystems and Environment, 97, 131–149. https://doi.org/10.1016/S0167-8809(03)00117-8

    Article  Google Scholar 

  67. Ma, M. (2005). Species richness vs evenness: Independent relationship and different responses to edaphic factors. Oikos, 111, 192–198. https://doi.org/10.1111/j.0030-1299.2005.13049.x

    Article  Google Scholar 

  68. Freyman, S., Kowalenko, C., & Hall, J. (1989). Effect of nitrogen, phosphorus and potassium on weed emergence and subsequent weed communities in south coastal British Columbia. Canadian Journal of Plant Science, 69, 1001–1010. https://doi.org/10.4141/cjps89-121

    Article  Google Scholar 

  69. Benjamin, L. R., Milne, A. E., Parsons, D. J., & Lutman, P. J. (2010). A model to simulate yield losses in winter wheat caused by weeds, for use in a weed management decision support system. Crop Protection, 29, 1264–1273. https://doi.org/10.1016/j.cropro.2010.07.015

    Article  Google Scholar 

  70. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

    Article  Google Scholar 

  71. Colbach, N., Colas, F., Pointurier, O., Queyrel, W., & Villerd, J. (2017). A methodology for multi-objective cropping system design based on simulations. Application to weed management. European Journal of Agronomy, 87, 59–73. https://doi.org/10.1016/j.eja.2017.04.005

    Article  Google Scholar 

  72. Mézière, D., Colbach, N., Dessaint, F., & Granger, S. (2015a). Which cropping systems to reconcile weed-related biodiversity and crop production in arable crops? An approach with simulation-based indicators. European Journal of Agronomy, 68, 22–37. https://doi.org/10.1016/j.eja.2015.04.004

    Article  Google Scholar 

  73. Mézière, D., Petit, S., Granger, S., Biju-Duval, L., & Colbach, N. (2015b). Developing a set of simulation-based indicators to assess harmfulness and contribution to biodiversity of weed communities in cropping systems. Ecological Indicators, 48, 157–170. https://doi.org/10.1016/j.ecolind.2014.07.028

    Article  Google Scholar 

  74. Berti, A., Bravin, F., & Zanin, G. (2003). Application of decision-support software for postemergence weed control. Weed Science, 51, 618–627. https://doi.org/10.1614/0043-1745(2003)051[0618:AODSFP]2.0.CO;2

    Article  Google Scholar 

  75. Kropff, M. J., & Spitters, C. J. T. (1991). A simple model of crop loss by weed competition from early observations on relative leaf area of the weeds. Weed Research, 31, 97–105. https://doi.org/10.1111/j.1365-3180.1991.tb01748.x

    Article  Google Scholar 

  76. Bagavathiannan, M. V., & Norsworthy, J. K. (2012). Late-season seed production in arable weed communities: Management implications. Weed Science, 60, 325–334. https://doi.org/10.1614/WS-D-11-00222.1

    Article  Google Scholar 

  77. Gonzalez-Andujar, J. L. (2008). Weed control models. In S. Jørgensen & B. Fath (Eds.), Population dynamics (Encyclopedia of ecology) (Vol. 5, pp. 3776–3780). Elsevier.

    Google Scholar 

  78. Cousens, R., Doyle, C. J., Wilson, B. J., & Cussans, G. W. (1986). Modelling the economics of controlling Avena fatua in winter wheat. Journal of Pest Science, 17, 1–12. https://doi.org/10.1002/ps.2780170102

    Article  Google Scholar 

  79. Doyle, C. J., Cousens, R., & Moss, S. R. (1986). A model of the economics of controlling Alopecurus myosuroides Huds. in winter wheat. Crop Protection, 5, 143–150. https://doi.org/10.1016/0261-2194(86)90096-7

    Article  Google Scholar 

  80. Bennett, A. C., Price, A. J., Sturgill, M. C., Buol, G. S., & Wilkerson, G. G. (2003). HADSS, Pocket HERB, and WebHADSS: Decision aids for field crops. Weed Technology, 17, 412–420. https://doi.org/10.1614/0890-037X(2003)017[0412:HPHAWD]2.0.CO;2

    Article  Google Scholar 

  81. Coble, H. D., & Mortensen, D. A. (1992). The threshold concept and its application to weed science. Weed Technology, 6, 191–195. https://doi.org/10.1017/S0890037X00034552

    Article  Google Scholar 

  82. Colbach, N., & Cordeau, S. (2018). Reduced herbicide use does not increase crop yield loss if it is compensated by alternative preventive and curative measures. European Journal of Agronomy, 94, 67–78. https://doi.org/10.1016/j.eja.2017.12.008

    Article  Google Scholar 

  83. McCown, R. L., Hochman, Z., & Carberry, P. S. (2002). Probing the enigma of the decision support system for farmers: Learning from experience and from theory. Agricultural Systems, 74, 1–10. https://doi.org/10.1016/S0308-521X(02)00021-5

    Article  Google Scholar 

  84. Swanton, C. J., Mahoney, K. J., Chandler, K., & Gulden, R. H. (2008). Integrated weed management: Knowledge-based weed management systems. Weed Science, 56, 168–172. https://doi.org/10.1614/WS-07-126.1

    Article  Google Scholar 

  85. Wilkerson, G. G., Wiles, L. J., & Bennett, A. C. (2002). Weed management decision models: Pitfalls, perceptions, and possibilities of the economic threshold approach. Weed Science, 50, 411–424. https://doi.org/10.1614/0043-1745(2002)050[0411:WMDMPP]2.0.CO;2

    Article  Google Scholar 

  86. Zanin, G., & Sattin, M. (1988). Threshold level and seed production of velvetleaf (Abutilon theophrasti Medicus) in maize. Weed Research, 28, 347–352. https://doi.org/10.1111/j.1365-3180.1988.tb00813.x

    Article  Google Scholar 

  87. Kudsk, P. (2008). Optimizing herbicide dose: A straightforward approach to reduce the risk of side effects of herbicides. Environmentalist, 28, 49–55. https://doi.org/10.1007/s10669-007-9041-8

    Article  Google Scholar 

  88. Kudsk, P., Mathiassen, S. K., & Rydahl, P. (2014). Decision support system for optimized herbicide dose in spring barley. Weed Technology, 28, 19–27. https://doi.org/10.1614/WT-D-13-00085.1

    Article  Google Scholar 

  89. Sønderskov, M., Fritzsche, R., de Mol, F., et al. (2015). DSSHerbicide: Weed control in winter wheat with a decision support system in three South Baltic regions–Field experimental results. Crop Protection, 76, 15–23. https://doi.org/10.1016/j.cropro.2015.06.009

    Article  Google Scholar 

  90. Jensen, H. G., Jacobsen, L. B., Pedersen, S. M., & Tavella, E. (2012). Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precision Agriculture, 13, 661–677. https://doi.org/10.1007/s11119-012-9276-3

    Article  Google Scholar 

  91. Gutjahr, C., & Gerhards, R. (2010). Decision rules for site-specific weed management. In E. C. Oerke, R. Gerhards, G. Menz, & R. A. Sikora (Eds.), Precision crop protection—The challenge and use of heterogeneity (pp. 223–239). Springer.

    Chapter  Google Scholar 

  92. Team, R. C. (2013). R: A language and environment for statistical computing. Retrieved from http://finzi.psych.upenn.edu/R/library/dplR/doc/intro-dplR.pdf

  93. Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50, 346–363. https://doi.org/10.1002/bimj.200810425

    Article  MathSciNet  MATH  Google Scholar 

  94. Streibig, J. C., Kudsk, P., & Jensen, J. E. (1998). A general joint action model for herbicide mixtures. Journal of Pest Science, 53, 21–28. https://doi.org/10.1002/(SICI)1096-9063(199805)53:1%3C21::AID-PS748%3E3.0.CO;2-L

    Article  Google Scholar 

  95. Buhler, D. D., Liebman, M., & Obrycki, J. J. (2000). Theoretical and practice challenges to an IPM approach to weed management. Weed Science, 48, 274–280. https://doi.org/10.1614/0043-1745(2000)048[0274:TAPCTA]2.0.CO;2

    Article  Google Scholar 

  96. Benjamin, L. R., Milne, A. E., Parsons, D. J., Cussans, J., & Lutman, P. J. W. (2009). Using stochastic dynamic programming to support weed management decisions over a rotation. Weed Research, 49, 207–216. https://doi.org/10.1111/j.1365-3180.2008.00678.x

    Article  Google Scholar 

  97. Monjardino, M., Pannell, D. J., & Powles, S. B. (2003). Multispecies resistance and integrated management: A bioeconomic model for integrated management of rigid ryegrass (Lolium rigidum) and wild radish (Raphanus raphanistrum). Weed Science, 51, 798–809. https://doi.org/10.1614/P2002-118

    Article  Google Scholar 

  98. Naudin, K., Husson, O., Scopel, E., Auzoux, S., Giner, S., & Giller, K. E. (2015). PRACT (Prototyping Rotation and Association with Cover crop and no Till)–a tool for designing conservation agriculture systems. European Journal of Agronomy, 69, 21–31. https://doi.org/10.1016/j.eja.2015.05.003

    Article  Google Scholar 

  99. Castelán-Ortega, O. A., Fawcett, R. H., Arriaga-Jordán, C., & Herrero, M. (2003). A decision support system for smallholder campesino maize–cattle production systems of the Toluca Valley in Central Mexico. Part II—Emulating the farming system. Agricultural Systems, 75, 23–46. https://doi.org/10.1016/S0308-521X(01)00110-X

    Article  Google Scholar 

  100. Munier-Jolain, N. M., Chavvel, B., & Gasquez, J. (2002). Long-term modelling of weed control strategies: Analysis of threshold-based options for weed species with contrasted competitive abilities. Weed Research, 42, 107–122. https://doi.org/10.1046/j.1365-3180.2002.00267.x

    Article  Google Scholar 

  101. Melander, B., & Rasmussen, K. (2000). Reducing intrarow weed numbers in row crops by means of a biennial cultivation system. Weed Research, 40, 205–218. https://doi.org/10.1046/j.1365-3180.2000.00183.x

    Article  Google Scholar 

  102. Buhler, D. D., Hartzler, R. G., & Forcella, F. (1997). Implications of weed seedbank dynamics to weed management. Weed Science, 45, 329–336. https://doi.org/10.1017/S0043174500092948

    Article  Google Scholar 

  103. Hochman, Z., & Carberry, P. S. (2011). Emerging consensus on desirable characteristics of tools to support farmers’ management of climate risk in Australia. Agricultural Systems, 104, 441–450. https://doi.org/10.1016/j.agsy.2011.03.001

    Article  Google Scholar 

  104. Boutsalis, P., Gill, G. S., & Preston, C. (2012). Incidence of herbicide resistance in rigid ryegrass (Lolium rigidum) across southeastern Australia. Weed Technology, 26, 391–398. https://doi.org/10.1614/WT-D-11-00150.1

    Article  Google Scholar 

  105. Travlos, I., Tabaxi, I., Papadimitriou, D., Bilalis, D., & Chachalis, D. (2016). Lolium rigidum Gaud. biotypes from Greece with resistance to glyphosate and other herbicides. Bulletin UASVM Horticulture, 73, 1–2. https://doi.org/10.15835/buasvmcn-hort:11772

    Article  Google Scholar 

  106. Lacoste, M., & Powles, S. (2015). RIM: Anatomy of a weed management Decision Support System for adaptation and wider application. Weed Science, 63, 676–689. https://doi.org/10.1614/ws-d-14-00163.1

    Article  Google Scholar 

  107. Lacoste, M., & Powles, S. B. (2014). Upgrading the RIM model for improved support of integrated weed management extension efforts in cropping systems. Weed Technology, 28, 703–720. https://doi.org/10.1614/WT-D-14-00020.1

    Article  Google Scholar 

  108. Dhima, K. V., Eleftherohorinos, I. G., & Vasilakoglou, I. B. (2000). Interference between Avena sterilis, Phalaris minor and five barley cultivars. Weed Research, 40, 549–559. https://doi.org/10.1046/j.1365-3180.2000.00213.x

    Article  Google Scholar 

  109. Knezevic, S. Z., & Datta, A. (2015). The critical period for weed control: Revisiting data analysis. Weed Science, 63, 188–202. https://doi.org/10.1614/WS-D-14-00035.1

    Article  Google Scholar 

  110. Johannsen, C. J., Carter, P. G., Morris, D. K., Ross, K., & Erickson, B. (2000). The real applications of remote sensing to agriculture. Ιn Proceedings of the second international conference on geospatial information in agriculture and forestry, vol. 1. Lake Buena Vista, FL, January 10–12 2000, pp. 1–5.

    Google Scholar 

  111. Booltink, H. W. G., Van Alphen, B. J., Batchelor, W. D., Paz, J. O., Stoorvogel, J. J., & Vargas, R. (2001). Tools for optimizing management of spatially-variable fields. Agricultural Systems, 70(2–3), 445–476. https://doi.org/10.1016/S0308-521X(01)00055-5

    Article  Google Scholar 

  112. Kipling, R. P., Bannink, A., Bellocchi, G., et al. (2016). Modeling European ruminant production systems: Facing the challenges of climate change. Agricultural Systems, 147, 24–37. https://doi.org/10.1016/j.agsy.2016.05.007

    Article  Google Scholar 

  113. Li, H., Zhao, Y., & Zheng, F. (2020). The framework of an agricultural land-use decision support system based on ecological environmental constraints. Science of the Total Environment, 717, 137149. https://doi.org/10.1016/j.scitotenv.2020.137149

    Article  Google Scholar 

  114. Starke, S. D., & Baber, C. (2020). The effect of known decision support reliability on outcome quality and visual information foraging in joint decision making. Applied Ergonomics, 86, 103102. https://doi.org/10.1016/j.apergo.2020.103102

    Article  Google Scholar 

  115. Kristensen, K., & Rasmussen, I. A. (2002). The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides. Computers and Electronics in Agriculture, 33, 197–217. https://doi.org/10.1016/S0168-1699(02)00007-8

    Article  Google Scholar 

  116. Zhan, Y., & Zhang, M. (2012). PURE: A web-based decision support system to evaluate pesticide environmental risk for sustainable pest management practices in California. Ecotoxicology and Environmental Safety, 82, 104–113. https://doi.org/10.1016/j.ecoenv.2012.05.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanatas, P., Travlos, I., Tataridas, A., Gazoulis, I. (2022). Decision-Making and Decision Support System for a Successful Weed Management. In: Bochtis, D.D., Sørensen, C.G., Fountas, S., Moysiadis, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme III: Decision. Springer Optimization and Its Applications, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-030-84152-2_8

Download citation

Publish with us

Policies and ethics