Skip to main content

A Weed Control Unmanned Ground Vehicle Prototype for Precision Farming Activities: The Case of Red Rice

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme III: Decision

Abstract

The implications of red rice on the total production of commercially cultivated rice are widely documented in the literature. Red rice, due to its genetic similarity with cultivated rice, is not affected by typical herbicides, and thus it is considered as a major weed challenge. Conventional and chemical-based solutions to address red rice are inefficient. In this research, a simulated and a real-world prototype robot system for weed control in paddy fields is developed, which consists of an Unmanned Ground Vehicle (UGV) that is equipped with a specially designed rod mechanism. The rod mechanism is coated with a porous absorbent material (e.g., sponge) that is saturated with herbicide and uses a sensor-based control mechanism for applying the herbicide only to the top of red rice plants thus avoiding the contact with the commercially cultivated rice plants. The rod dynamically reacts to the harsh terrain, via using a slope and a height control automation system, in order to retain the rod mechanism’s height at a certain level and horizontally aligned to the terrain so as to affect only the red rice plants. The method can be applied after the end of the growing season as red rice plants exceed in height the plants of the commercial rice. To that end, the impact of red rice on the cultivation of commercial rice varieties can be limited thus ensuring supply stability downstream the agri-food value network. The prototype robot system operates in a fast and accurate manner and delivers consistent results regardless of the geomorphology of the terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Delouche, J. C., Burgos, N. R., Gealy, D. R., de San Martín, G. Z., Labrada, R., Larinde, M., & Rosell, C. (2007). Weedy rices—Origin, biology, ecology and control. In Rome: FAO Plant Production and Protection Paper 188. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  2. Estorninos, L. E., Gealy, D. R., Gbur, E. E., Talbert, R. E., & McClelland, M. R. (2005). Rice and red rice interference. II. Rice response to population densities of three red rice (Oryza sativa) ecotypes. Weed Science, 53, 683–689.

    Article  Google Scholar 

  3. Baek, J. S., & Chung, N. J. (2012). Seed wintering and deterioration characteristics between weedy and cultivated rice. Rice, 5(1), 21.

    Article  Google Scholar 

  4. Fisher, A., & Ramirez, A. (1993). Red rice (Oryza sativa): Competition studies for management decisions. International Journal of Pest Management, 39, 133–138.

    Article  Google Scholar 

  5. Durand-Morat, A., Nalley, L. L., & Thoma, G. (2018). The implications of red rice on food security. Global Food Security, 18, 62–75.

    Article  Google Scholar 

  6. Busconi, M., Rossi, D., Lorenzoni, C., Baldi, G., & Fogher, C. (2012). Spread of herbicide-resistant weedy rice (red rice, Oryza sativa L.) after 5 years of Clearfield rice cultivation in Italy. Plant Biology, 14, 751–759.

    Article  Google Scholar 

  7. Sudianto, E., Beng-Kah, S., Ting-Xiang, N., Saldain, N. E., Scott, R. C., & Burgos, N. R. (2013). Clearfield® rice: Its development, success, and key challenges on a global perspective. Crop Protection, 49, 40–51.

    Article  Google Scholar 

  8. Owen, M. D. K., & Zelaya, I. A. (2005). Herbicide-resistant crop and weed resistance to herbicides. Pest Management Science, 61, 301–311.

    Article  Google Scholar 

  9. Ferrero, A., Vidotto, F., Balsari, P., & Airoldi, G. (1999). Mechanical and chemical control of red rice (Oryza sativa L. var. sylvatica) in rice (Oryza sativa L.) pre-planting. Crop Protection, 18(4), 245–251.

    Article  Google Scholar 

  10. Hellenic Statistical Authority. (2020). Areas and Production, 2018: Table 02a. Cereals for grain. Areas and production, by Region and Regional Unity. Retrieved August 25, 2020, from https://www.statistics.gr/en/statistics/-/publication/SPG06/-.

  11. Eleftherohorinos, I., Dhima, K. V., & Vasilakoglou, I. B. (2002). Interference of red rice in rice grown in Greece. Weed Science, 50(2), 167–172.

    Article  Google Scholar 

  12. Trade and Markets Division, Food and Agriculture Organization of the United Nations. (2016). Rice market monitor 2016, Volume XIX, Issue No. 3. Retrieved August 25, 2020, from http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Rice/Images/RMM/RMM-Dec16_H.pdf.

  13. ΙRRI, Africa Rice, and C.I.A.T. (2010, November). Global Rice Science Partnership (GRiSP).

    Google Scholar 

  14. Bechtsis, D., Moisiadis, V., Tsolakis, N., Vlachos, D., & Bochtis, D. (2019). Unmanned ground vehicles in precision farming services: An integrated emulation modelling approach. In M. Salampasis & T. Bournaris (Eds.), Information and communication technologies in modern agricultural development. HAICTA 2017. Communications in computer and information science (Vol. 953, pp. 177–190). Springer.

    Google Scholar 

  15. Tsolakis, N., Bechtsis, D., & Bochtis, D. (2019a). Agros: A robot operating system based emulation tool for agricultural robotics, Open Access. MDPI Agronomy, 9(7), 403.

    Article  Google Scholar 

  16. Mousazadeh, H. (2013). A technical review on navigation systems of agricultural autonomous off-road vehicles. Journal of Terramechanics, 50(3), 211–232. https://doi.org/10.1016/j.jterra.2013.03.004

    Article  Google Scholar 

  17. Liu, Y., Noguchi, N., & Liang, L. (2019). Development of a positioning system using UAV-based computer vision for an airboat navigation in paddy field. Computers and Electronics in Agriculture, 162(April), 126–133. https://doi.org/10.1016/j.compag.2019.04.009

    Article  Google Scholar 

  18. Chen, B., Tojo, S., & Watanabe, K. (2003). Machine vision for a micro weeding robot in a paddy field. Biosystems Engineering, 85(4), 393–404. https://doi.org/10.1016/S1537-5110(03)00078-3

    Article  Google Scholar 

  19. Liu, Y., Noguchi, N., & Yusa, T. (2014). Development of an unmanned surface vehicle platform for autonomous navigation in paddy field. In IFAC Proceedings Volumes (IFAC-PapersOnline) (Vol. 19, Issue 3). IFAC. https://doi.org/10.3182/20140824-6-za-1003.00616.

  20. Ziska, L. H., Gealy, D. R., Burgos, N., Caicedo, A. L., Gressel, J., Lawton-Rauh, A. L., Avila, L. A., Theisen, G., Norsworthy, J., Ferrero, A., Vidotto, F., Johnson, D. E., Ferreira, F. G., Marchesan, E., Menezes, V., Cohn, M. A., Linscombe, S., Carmona, L., Tang, R., & Merotto, A. (2015). Weedy (Red) rice. An emerging constraint to global rice production. In Advances in agronomy (Vol. 129). Elsevier. https://doi.org/10.1016/bs.agron.2014.09.003

    Chapter  Google Scholar 

  21. Bechar, A., & Vigneault, C. (2017). Agricultural robots for field operations. Part 2: Operations and systems. Biosystems Engineering, 153, 110–128. https://doi.org/10.1016/j.biosystemseng.2016.11.004

    Article  Google Scholar 

  22. Han, X., Kim, H. J., Jeon, C. W., Moon, H. C., Kim, J. H., & Yi, S. Y. (2019). Application of a 3D tractor-driving simulator for slip estimation-based path-tracking control of auto-guided tillage operation. Biosystems Engineering, 178, 70–85. https://doi.org/10.1016/j.biosystemseng.2018.11.003

    Article  Google Scholar 

  23. Luo, X., & Zhang, Z. (2007). DGPS navigation control system for rice transplanter. In ASABE annual international meeting, Minnesota, 17–20 June 2007.

    Google Scholar 

  24. Kim, GH, Kim, SC, Hong, YK, Han, KS & Lee, SG 2012, A robot platform for unmanned weeding in a paddy field using sensor fusion in 2012 IEEE International Conference on Automation Science and Engineering: Green Automation Toward a Sustainable Society, CASE 2012., 6386466, IEEE International Conference on Automation Science and Engineering, pp. 904-907.. https://doi.org/10.1109/CoASE.2012.6386466

    Google Scholar 

  25. Yin, X., Du, J., Geng, D., & Jin, C. (2018). Development of an automatically guided rice transplanter using RTK-GNSS and IMU. IFAC-PapersOnLine, 51(17), 374–378. https://doi.org/10.1016/j.ifacol.2018.08.193

    Article  Google Scholar 

  26. Nagasaka, Y., Umeda, N., Kanetai, Y., Taniwaki, K., & Sasaki, Y. (2004). Autonomous guidance for rice transplanting using global positioning and gyroscopes. Computers and Electronics in Agriculture, 43(3), 223–234. https://doi.org/10.1016/j.compag.2004.01.005

    Article  Google Scholar 

  27. Nishiwaki, K., Amaha, K., & Otani, R. (2004). Development of nozzle positioning system for precision sprayer. Paper presented at the Automation Technology for Off-Road Equipment. Kyoto: Japan.

    Google Scholar 

  28. Gibbert, M., Ruigrok, W., & Wicki, B. (2008). What passes as a rigorous case study? Strategic Management Journal, 29(13), 1465–1474.

    Article  Google Scholar 

  29. Tsolakis, N., Bechtsis, D., & Srai, J. S. (2019b). Intelligent autonomous vehicles in digital supply chains: From conceptualisation, to simulation modelling, to real-world operations. Business Process Management Journal, 25(3), 414–437.

    Article  Google Scholar 

  30. Takaya, K., Asai, T., Kroumov, V., & Smarandache, F. (2016). Simulation environment for mobile robots testing using ROS and Gazebo, 2016 20th International Conference on System Theory, Control and Computing (ICSTCC). Sinaia, 2016, 96–101. https://doi.org/10.1109/ICSTCC.2016.7790647

    Article  Google Scholar 

  31. ROS Wiki. (2020). Navigation Tutorials. Retrieved from http://wiki.ros.org/navigation/Tutorials/RobotSetup.

  32. Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23–33.

    Article  Google Scholar 

  33. Choset, H. (2000). Coverage of known spaces: The boustrophedon cellular decomposition. Autonomous Robots, 9, 247–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Bechtsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koulousis, A., Kalaitzidis, D., Bechtsis, D., Yfoulis, C., Tsolakis, N., Bochtis, D. (2022). A Weed Control Unmanned Ground Vehicle Prototype for Precision Farming Activities: The Case of Red Rice. In: Bochtis, D.D., Sørensen, C.G., Fountas, S., Moysiadis, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme III: Decision. Springer Optimization and Its Applications, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-030-84152-2_7

Download citation

Publish with us

Policies and ethics