Skip to main content

From Precision Agriculture to Agriculture 4.0: Integrating ICT in Farming

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme III: Decision

Abstract

The ever-increasing need for food worldwide, the scarcity of natural resources, and climate change call for drastic changes in conventional agricultural processes. Agriculture is called to adapt to the rapid evolution of technology by incorporating innovative technologies to the applied practices. To that end, Information and Communications Technologies (ICT), including sensors, robots, artificial intelligence, wireless sensor networks, and cloud computing constitute a family of technologies that can provide beneficial solutions that can contribute to the modernization of agricultural operations. The “big data,” produced by these technologies, are capable of helping towards this direction and facilitate the management of various fields of agricultural production. As a matter of fact, the next-generation technology standard, namely 5G, gives a plethora of new opportunities for farmers rendering itself a game changer for the ICT realization. This chapter focuses on prerequisites for the fourth agricultural revolution, namely Agriculture 4.0. It briefly describes the main Agricultural 4.0 components, as a means of giving an overview of this field in conjunction with the potential benefits in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bank, W. (2011). ICT IN AGRICULTURE Connecting Smallholders to Knowledge, Networks, and Institutions. Washington.

    Book  Google Scholar 

  2. Walter, A., Finger, R., Huber, R., & Buchmann, N. (2017). Opinion: Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences, 114(24), 6148–6150. https://doi.org/10.1073/pnas.1707462114

    Article  Google Scholar 

  3. Sorensen, C. G., Pesonen, L., Fountas, S., Suomi, P., Bochtis, D., Bildsøe, P., & Pedersen, S. M. (2010). A user-centric approach for information modelling in arable farming. Computers and Electronics in Agriculture, 73(1), 44–55. https://doi.org/10.1016/j.compag.2010.04.003

    Article  Google Scholar 

  4. Sørensen, C. A. G., Kateris, D., & Bochtis, D. (2019). ICT innovations and smart farming. In Communications in computer and information science (Vol. 953). https://doi.org/10.1007/978-3-030-12998-9_1

    Chapter  Google Scholar 

  5. Sørensen, C. G., Pesonen, L., Bochtis, D. D., Vougioukas, S. G., & Suomi, P. (2011). Functional requirements for a future farm management information system. Computers and Electronics in Agriculture, 76(2), 266–276. https://doi.org/10.1016/j.compag.2011.02.005

    Article  Google Scholar 

  6. Bochtis, D. D., Sørensen, C. G., Green, O., Bartzanas, T., & Fountas, S. (2010a). Feasibility of a modelling suite for the optimised biomass harvest scheduling. Biosystems Engineering, 107(4), 283–293. https://doi.org/10.1016/j.biosystemseng.2010.05.005

    Article  Google Scholar 

  7. Bochtis, D. D., Sørensen, C. G., & Vougioukas, S. G. (2010b). Path planning for in-field navigation-aiding of service units. Computers and Electronics in Agriculture, 74(1), 80–90. https://doi.org/10.1016/j.compag.2010.06.008

    Article  Google Scholar 

  8. Bochtis, D. D., Sørensen, C. G. C., & Busato, P. (2014). Advances in agricultural machinery management: A review. Biosystems Engineering. https://doi.org/10.1016/j.biosystemseng.2014.07.012

  9. Sethi, P., & Sarangi, S. R. (2017). Internet of things: Architectures, protocols, and applications. Journal of Electrical and Computer Engineering, 2017. https://doi.org/10.1155/2017/9324035

  10. Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48. https://doi.org/10.1016/j.biosystemseng.2017.09.007

    Article  Google Scholar 

  11. Iakovou, E., Bochtis, D., Vlachos, D., & Aidonis, D. (2015). Supply chain management for sustainable food networks. In E. Iakovou, D. Bochtis, D. Vlachos, & D. Aidonis (Eds.), Supply chain management for sustainable food networks. https://doi.org/10.1002/9781118937495

    Chapter  Google Scholar 

  12. Verdouw, C. N., Beulens, A. J. M., & van der Vorst, J. G. A. J. (2013). Virtualisation of floricultural supply chains: A review from an internet of things perspective. Computers and Electronics in Agriculture, 99, 160–175. https://doi.org/10.1016/j.compag.2013.09.006

    Article  Google Scholar 

  13. Yu, J., Subramanian, N., Ning, K., & Edwards, D. (2015). Product delivery service provider selection and customer satisfaction in the era of internet of things: A Chinese e-retailers’ perspective. International Journal of Production Economics, 159, 104–116. https://doi.org/10.1016/j.ijpe.2014.09.031

    Article  Google Scholar 

  14. Popović, T., Latinović, N., Pešić, A., Zečević, Ž., Krstajić, B., & Djukanović, S. (2017). Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Computers and Electronics in Agriculture, 140, 255–265. https://doi.org/10.1016/j.compag.2017.06.008

    Article  Google Scholar 

  15. Anagnostis, A., Asiminari, G., Papageorgiou, E., & Bochtis, D. (2020). A convolutional neural networks based method for anthracnose infected walnut tree leaves identification. Applied Sciences, 10(2), 469. https://doi.org/10.3390/app10020469

    Article  Google Scholar 

  16. Anagnostis, A., Tagarakis, A. C., Asiminari, G., Papageorgiou, E., Kateris, D., Moshou, D., & Bochtis, D. (2021). A deep learning approach for anthracnose infected trees classification in walnut orchards. Computers and Electronics in Agriculture, 182, 105998. https://doi.org/10.1016/j.compag.2021.105998

    Article  Google Scholar 

  17. Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1–12. https://doi.org/10.1016/j.aiia.2019.05.004

    Article  Google Scholar 

  18. Patrício, D. I., & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, 153, 69–81. https://doi.org/10.1016/j.compag.2018.08.001

    Article  Google Scholar 

  19. Dasgupta, S., Meisner, C., Wheeler, D., Xuyen, K., & Thi Lam, N. (2007). Pesticide poisoning of farm workers-implications of blood test results from Vietnam. International Journal of Hygiene and Environmental Health, 210(2), 121–132. https://doi.org/10.1016/j.ijheh.2006.08.006

    Article  Google Scholar 

  20. Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. https://doi.org/10.1016/j.aiia.2020.04.002

    Article  Google Scholar 

  21. Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2018.01.009

  22. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  23. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  24. Liakos, K., Busato, P., Moshou, D., Pearson, S., Bochtis, D., Liakos, K. G., … Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674

    Article  Google Scholar 

  25. Yang, X., & Guo, T. (2017). Machine learning in plant disease research. European. Journal of Biomedical Research, 3(1), 6. https://doi.org/10.18088/ejbmr.3.1.2017.pp6-9

    Article  Google Scholar 

  26. Liu, B., & Bruch, R. (2020). Weed detection for selective spraying: A review. Current Robotics Reports, 1(1), 19–26.

    Article  Google Scholar 

  27. Elavarasan, D., Vincent, D. R., Sharma, V., Zomaya, A. Y., & Srinivasan, K. (2018). Forecasting yield by integrating agrarian factors and machine learning models: A survey. Computers and Electronics in Agriculture, 155, 257–282. https://doi.org/10.1016/j.compag.2018.10.024

    Article  Google Scholar 

  28. Wäldchen, J., Rzanny, M., Seeland, M., & Mäder, P. (2018). Automated plant species identification—Trends and future directions. PLoS Computational Biology, 14(4), e1005993.

    Article  Google Scholar 

  29. Ge, X., Wang, J., Ding, J., Cao, X., Zhang, Z., Liu, J., & Li, X. (2019). Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. Peer Journal, 7, e6926. https://doi.org/10.7717/peerj.6926

    Article  Google Scholar 

  30. Gutiérrez, S., Diago, M. P., Fernández-Novales, J., & Tardaguila, J. (2018). Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLoS One, 13(2), e0192037. https://doi.org/10.1371/journal.pone.0192037

    Article  Google Scholar 

  31. Chi, M., Plaza, A., Benediktsson, J. A., Sun, Z., Shen, J., & Zhu, Y. (2016). Big data for remote sensing: Challenges and opportunities. Proceedings of the IEEE, 104(11), 2207–2219. https://doi.org/10.1109/JPROC.2016.2598228

    Article  Google Scholar 

  32. Lampridi, M. G., Sørensen, C. G., & Bochtis, D. (2019a). Agricultural sustainability: A review of concepts and methods. Sustainability (Switzerland), 11(18). https://doi.org/10.3390/su11185120

  33. Lampridi, M. G., Kateris, D., Vasileiadis, G., Marinoudi, V., Pearson, S., Sørensen, C. G., … Bochtis, D. (2019b). A case-based economic assessment of robotics employment in precision arable farming. Agronomy, 9(4). https://doi.org/10.3390/agronomy9040175

  34. Lampridi, M., Kateris, D., Sørensen, C. G., & Bochtis, D. (2020). Energy footprint of mechanized agricultural operations. Energies, 13(3), 1–15. https://doi.org/10.3390/en13030769

    Article  Google Scholar 

  35. Sonka, S. (2016). Big data: Fueling the next evolution of agricultural innovation. Journal of Innovation Management, 4(1), 114–136. https://doi.org/10.24840/2183-0606_004.001_0008

    Article  Google Scholar 

  36. Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37. https://doi.org/10.1016/j.compag.2017.09.037

    Article  Google Scholar 

  37. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming—A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023

    Article  Google Scholar 

  38. Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using iot and sensors. Sensors (Switzerland), 20. https://doi.org/10.3390/s20113113

  39. Garg, V. K. (2007). Wireless personal area networks: Low rate and high rate. In Wireless communications & networking (pp. 675–712). https://doi.org/10.1016/b978-012373580-5/50054-5

    Chapter  Google Scholar 

  40. Bai, X., Liu, L., Cao, M., Panneerselvam, J., Sun, Q., & Wang, H. (2017). Collaborative actuation of wireless sensor and actuator networks for the agriculture industry. IEEE Access, 5, 13286–13296. https://doi.org/10.1109/ACCESS.2017.2725342

    Article  Google Scholar 

  41. Hokazono, S., & Hayashi, K. (2012). Variability in environmental impacts during conversion from conventional to organic farming: A comparison among three rice production systems in Japan. Journal of Cleaner Production, 28, 101–112. https://doi.org/10.1016/j.jclepro.2011.12.005

    Article  Google Scholar 

  42. Nassi O Di Nasso, N., Bosco, S., Di Bene, C., Coli, A., Mazzoncini, M., & Bonari, E. (2011). Energy efficiency in long-term Mediterranean cropping systems with different management intensities. Energy. https://doi.org/10.1016/j.energy.2010.06.026

  43. Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307. https://doi.org/10.1016/j.jclepro.2014.04.036

    Article  Google Scholar 

  44. Raikwar, M., Gligoroski, D., & Kralevska, K. (2019). SoK of used cryptography in blockchain. IEEE Access, 7, 148550–148575. https://doi.org/10.1109/ACCESS.2019.2946983

    Article  Google Scholar 

  45. Tian, F. (2016). An agri-food supply chain traceability system for China based on RFID & blockchain technology. In 2016 13th International Conference on Service Systems and Service Management, ICSSSM 2016. https://doi.org/10.1109/ICSSSM.2016.7538424.

  46. Tian, F. (2017). A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. In 14th International Conference on Services Systems and Services Management, ICSSSM 2017- Proceedings. https://doi.org/10.1109/ICSSSM.2017.7996119.

  47. Marinello, F., Atzori, M., Lisi, L., Boscaro, D., & Pezzuolo, A. (2017). Development of a traceability system for the animal product supply chain based on Blockchain Technology.

    Google Scholar 

  48. Leng, K., Bi, Y., Jing, L., Fu, H. C., & Van Nieuwenhuyse, I. (2018). Research on agricultural supply chain system with double chain architecture based on blockchain technology. Future Generation Computer Systems, 86, 641–649. https://doi.org/10.1016/j.future.2018.04.061

    Article  Google Scholar 

  49. Mell, P. M., & Grance, T. (2011). The NIST definition of cloud computing. https://doi.org/10.6028/NIST.SP.800-145.

  50. Symeonaki, E. G., Arvanitis, K. G., & Piromalis, D. D. (2019). Cloud computing for iot applications in climate-smart agriculture: A review on the trends and challenges toward sustainability. In A. Theodoridis, A. Ragkos, & M. Salampasis (Eds.), Innovative approaches and applications for sustainable rural development. HAICTA 2017. Springer earth system sciences. Springer. https://doi.org/10.1007/978-3-030-02312-6_9

    Chapter  Google Scholar 

  51. Du, Y., Wang, Y., & Shang, Y. (2020). Innovative research on the direction of network information based on cloud computing technology. Journal de Physique, 1648, 42007. https://doi.org/10.1088/1742-6596/1648/4/042007

    Article  Google Scholar 

  52. Prasad, S., Peddoju, S. K., & Ghosh, D. (2013). AgroMobile: A cloud-based framework for agriculturists on mobile platform. International Journal of Advanced Science and Technology, 59, 41–52. https://doi.org/10.14257/ijast.2013.59.04

    Article  Google Scholar 

  53. Namani, S., & Gonen, B. (2020). Smart agriculture based on IoT and cloud computing. Proceedings - 3rd International Conference on Information and Computer Technologies, ICICT 2020, pp. 553–556. https://doi.org/10.1109/ICICT50521.2020.00094.

  54. Benos, L., Bechar, A., & Bochtis, D. (2020). Safety and ergonomics in human-robot interactive agricultural operations. Biosystems Engineering, 200, 55–72. https://doi.org/10.1016/j.biosystemseng.2020.09.009

    Article  Google Scholar 

  55. Bechtsis, D., Moisiadis, V., Tsolakis, N., Vlachos, D., & Bochtis, D. (2019). Unmanned ground vehicles in precision farming services: An integrated emulation modelling approach. Communications in Computer and Information Science, 953, 177–190. https://doi.org/10.1007/978-3-030-12998-9_13

    Article  Google Scholar 

  56. Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information (Switzerland). https://doi.org/10.3390/info10110349

  57. Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94–111. https://doi.org/10.1016/j.biosystemseng.2016.06.014

    Article  Google Scholar 

  58. Bechar, A., & Vigneault, C. (2017). Agricultural robots for field operations. Part 2: Operations and systems. Biosystems Engineering, 153, 110–128. https://doi.org/10.1016/j.biosystemseng.2016.11.004

    Article  Google Scholar 

  59. Bochtis, D., Griepentrog, H. W., Vougioukas, S., Busato, P., Berruto, R., & Zhou, K. (2015). Route planning for orchard operations. Computers and Electronics in Agriculture, 113, 51–60. https://doi.org/10.1016/j.compag.2014.12.024

    Article  Google Scholar 

  60. Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, 114(4), 358–371. https://doi.org/10.1016/j.biosystemseng.2012.08.009

    Article  Google Scholar 

  61. Bochtis, D. D., & Vougioukas, S. G. (2008). Minimising the non-working distance travelled by machines operating in a headland field pattern. Biosystems Engineering, 101(1), 1–12. https://doi.org/10.1016/j.biosystemseng.2008.06.008

    Article  Google Scholar 

  62. Faiçal, B. S., Pessin, G., Filho, G. P. R., Furquim, G., de Carvalho, A. C. P. L. F., & Ueyama, J. (2014). Exploiting evolution on UAV control rules for spraying pesticides on crop fields. Communications in Computer and Information Science, 459, 49–58. https://doi.org/10.1007/978-3-319-11071-4_5

    Article  Google Scholar 

  63. Giles, D. K. (2016). Use of remotely piloted aircraft for pesticide applications: Issues and outlook. Outlooks on Pest Management, 27(5), 213–216. https://doi.org/10.1564/V27_OCT_05

    Article  Google Scholar 

  64. Jensen, M. A. F., Bochtis, D., Sorensen, C. G., Blas, M. R., & Lykkegaard, K. L. (2012). In-field and inter-field path planning for agricultural transport units. Computers and Industrial Engineering, 63(4), 1054–1061.

    Article  Google Scholar 

  65. Jensen, M. F., Bochtis, D., & Sørensen, C. G. (2015). Coverage planning for capacitated field operations, part II: Optimisation. Biosystems Engineering. https://doi.org/10.1016/j.biosystemseng.2015.07.002

  66. Zhou, K., Leck Jensen, A., Sørensen, C. G., Busato, P., & Bochtis, D. D. (2015). Corrigendum to “Agricultural operations planning in fields with multiple obstacle areas” [Comput. Electron. Agric. 109 (2014) 12-22] DOI: 10.1016/j.compag.2014.08.013]. Computers and Electronics in Agriculture, 116. https://doi.org/10.1016/j.compag.2015.07.013.

  67. Moysiadis, V., Tsolakis, N., Katikaridis, D., Sørensen, C. G., Pearson, S., & Bochtis, D. (2020). Mobile robotics in agricultural operations: A narrative review on planning aspects. Applied Sciences.

    Google Scholar 

  68. Roldán, J. J., del Cerro, J., Garzón-Ramos, D., Garcia-Aunon, P., Garzón, M., de León, J., & Barrientos, A. (2018). Robots in agriculture: State of art and practical experiences. In Service robots. https://doi.org/10.5772/intechopen.69874

    Chapter  Google Scholar 

  69. Tarver, C., Tonnemacher, M., Chen, H., Zhang, J., & Cavallaro, J. R. (2021). GPU-based, LDPC decoding for 5G and beyond. IEEE Open Journal of Circuits and Systems, 2, 278–290. https://doi.org/10.1109/OJCAS.2020.3042448

    Article  Google Scholar 

  70. Hu, X. (2021). Coupling of agricultural economy and environment based on 5G network and internet of things system. Microprocessors and Microsystems, 80, 103569. https://doi.org/10.1016/j.micpro.2020.103569

    Article  Google Scholar 

  71. Li, M., & Abula, B. (2020). Evaluation of economic utility of smart agriculture based on 5G network and wireless sensors. Microprocessors and Microsystems, 103485. https://doi.org/10.1016/j.micpro.2020.103485

  72. Tang, Y., Dananjayan, S., Hou, C., Guo, Q., Luo, S., & He, Y. (2021). A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Computers and Electronics in Agriculture, 180, 105895. https://doi.org/10.1016/j.compag.2020.105895

    Article  Google Scholar 

  73. Bouras, C., Kollia, A., & Papazois, A. (2017). Dense deployments and DAS in 5G: A techno-economic comparison. Wireless Personal Communications, 94(3), 1777–1797. https://doi.org/10.1007/s11277-016-3711-0

    Article  Google Scholar 

  74. Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broadening responsible innovation in an era of smart farming. Frontiers in Sustainable Food Systems, 2, 87. https://doi.org/10.3389/fsufs.2018.00087

    Article  Google Scholar 

  75. Wollni, M., & Andersson, C. (2014). Spatial patterns of organic agriculture adoption: Evidence from Honduras. Ecological Economics, 97, 120–128. https://doi.org/10.1016/j.ecolecon.2013.11.010

    Article  Google Scholar 

  76. Heyman, F. (2016). Job polarization, job tasks and the role of firms. Economics Letters, 145, 246–251. https://doi.org/10.1016/J.ECONLET.2016.06.032

    Article  Google Scholar 

  77. Marinoudi, V., Sørensen, C. G., Pearson, S., & Bochtis, D. (2019). Robotics and labour in agriculture. A context consideration. Biosystems Engineering, 184, 111–121. https://doi.org/10.1016/j.biosystemseng.2019.06.013

    Article  Google Scholar 

  78. OECD. (2016). Business brief: Jobs in the digital era work differently.

    Google Scholar 

  79. Sansel Tandogan, N., & Gedikoglu, H. (2020). Socio-economic dimensions of adoption of conservation practices: What is needed to be done? Organic Agriculture. https://doi.org/10.5772/intechopen.93198

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lefteris Benos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benos, L., Makaritis, N., Kolorizos, V. (2022). From Precision Agriculture to Agriculture 4.0: Integrating ICT in Farming. In: Bochtis, D.D., Sørensen, C.G., Fountas, S., Moysiadis, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme III: Decision. Springer Optimization and Its Applications, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-030-84152-2_4

Download citation

Publish with us

Policies and ethics