Skip to main content

A Decision Support System for Green Crop Fertilization Planning

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme III: Decision

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 184))

  • 389 Accesses

Abstract

Energy consumption in primary food production systems that are intended to be used in food industry is very high because of the increased use of machinery equipment. The calculation of the energy inputs in such systems is complicated due to the number and quality of the data background that are required, which are not always available. Energy reduction to produce 1 kg of any agri-food product is very significant in terms of environmental protection and natural resources management but also in better promotion of the product under a “green” label. In this work, a decision support system is presented in terms of the energy assessment of crop fertilization operation. For the demonstration of the system, two crops were selected, namely industrial tomato and Arundo donax. The energy inputs of fertilization that were extracted were based on farmers’ data and other scientific data. According to the results, the total annual energy consumption for the total field area (about 28 ha) of the presented crops was up to 227.50 GJ for Arundo donax while in terms of tomato was up to 468.71 GJ. This high distribution in energy consumption shows the significant necessity in better field operations’ process management and use of agricultural machinery for optimization of the total energy cost of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moysiadis, V., Tsolakis, N., Katikaridis, D., et al. (2020). Mobile robotics in agricultural operations: A narrative review on planning aspects. Applied Sciences, 10(10), 3453. https://doi.org/10.3390/app10103453

    Article  Google Scholar 

  2. Bochtis, D. D., Sørensen, C. G. C., & Busato, P. (2014). Advances in agricultural machinery management: A review. Biosystems Engineering, 126, 69–81.

    Article  Google Scholar 

  3. Sørensen, C. G., Fountas, S., Nash, E., et al. (2010). Conceptual model of a future farm management information system. Computers and Electronics in Agriculture, 72, 37–47. https://doi.org/10.1016/j.compag.2010.02.003

    Article  Google Scholar 

  4. Marinoudi, V., Sørensen, C. G., Pearson, S., & Bochtis, D. (2019). Robotics and labour in agriculture. A context consideration. Biosystems Engineering, 184, 111–121. https://doi.org/10.1016/j.biosystemseng.2019.06.013

    Article  Google Scholar 

  5. Berruto, R., Busato, P., Bochtis, D. D., & Sørensen, C. G. (2013). Comparison of distribution systems for biogas plant residual. Biomass and Bioenergy, 52, 139–150. https://doi.org/10.1016/j.biombioe.2013.02.030

    Article  Google Scholar 

  6. Lampridi, M., Kateris, D., Sørensen, C. G., & Bochtis, D. (2020). Energy footprint of mechanized agricultural operations. Energies, 13, 1–15. https://doi.org/10.3390/en13030769

    Article  Google Scholar 

  7. Rodias, E., Berruto, R., Busato, P., et al. (2017b). Energy savings from optimised in-field route planning for agricultural machinery. Sustainabiity, 9(11), 1956. https://doi.org/10.3390/su9111956

    Article  Google Scholar 

  8. Bochtis, D. D., Sørensen, C. G., Busato, P., & Berruto, R. (2013). Benefits from optimal route planning based on B-patterns. Biosystems Engineering, 115, 389–395. https://doi.org/10.1016/j.biosystemseng.2013.04.006

    Article  Google Scholar 

  9. Rodias, E. C., Lampridi, M., Sopegno, A., et al. (2019a). Optimal energy performance on allocating energy crops. Biosystems Engineering, 181, 11–27. https://doi.org/10.1016/j.biosystemseng.2019.02.007

    Article  Google Scholar 

  10. Busato, P., Sopegno, A., Berruto, R., et al. (2017). AWeb-based tool for energy balance estimation in multiple-crops production systems. Sustain, 9, 1–18. https://doi.org/10.3390/su9050789

    Article  Google Scholar 

  11. Rodias, E., Berruto, R., Bochtis, D., et al. (2017a). A computational tool for comparative energy cost analysis of multiple-crop production systems. Energies, 10(7), 831. https://doi.org/10.3390/en10070831

    Article  Google Scholar 

  12. Sopegno, A., Rodias, E., Bochtis, D., et al. (2016). Model for energy analysis of Miscanthus production and transportation. Energies, 9, 1–16. https://doi.org/10.3390/en9060392

    Article  Google Scholar 

  13. Mantoam, E. J., Angnes, G., Mekonnen, M. M., & Romanelli, T. L. (2020). Energy, carbon and water footprints on agricultural machinery. Biosystems Engineering, 198, 304–322. https://doi.org/10.1016/j.biosystemseng.2020.08.019

    Article  Google Scholar 

  14. Nassi o Di Nasso, N., Bosco, S., Di Bene, C., et al. (2011). Energy efficiency in long-term Mediterranean cropping systems with different management intensities. Energy, 36, 1924–1930. https://doi.org/10.1016/j.energy.2010.06.026

    Article  Google Scholar 

  15. Dyer, J. A., Kulshreshtha, S. N., McConkey, B. G., & Desjardins, R. L. (2010). An assessment of fossil fuel energy use and CO2 emissions from farm field operations using a regional level crop and land use database for Canada. Energy, 35, 2261–2269. https://doi.org/10.1016/j.energy.2010.02.013

    Article  Google Scholar 

  16. Gündoǧmuş, E. (2006). Energy use on organic farming: A comparative analysis on organic versus conventional apricot production on small holdings in Turkey. Energy Conversion and Management, 47, 3351–3359. https://doi.org/10.1016/j.enconman.2006.01.001

    Article  Google Scholar 

  17. Arizpe, N., Giampietro, M., & Ramos-Martin, J. (2011). Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991-2003). CRC Critical Reviews in Plant Sciences., 30, 45–63. https://doi.org/10.1080/07352689.2011.554352

    Article  Google Scholar 

  18. Lampridi, M., & Kateris, D. (2020). Primary Production Sustainability. In D. Bochtis, C. Achillas, G. Banias, & M. Lampridi (Eds.), Bio-economy and agri-production: Concepts and evidence (1st ed., p. 348). Academic Press, Elsevier.

    Google Scholar 

  19. Rodias, E. C., Sopegno, A., Berruto, R., et al. (2019b). A combined simulation and linear programming method for scheduling organic fertiliser application. Biosystems Engineering, 178, 233–243. https://doi.org/10.1016/j.biosystemseng.2018.11.002

    Article  Google Scholar 

  20. Samavatean, N., Rafiee, S., Mobli, H., & Mohammadi, A. (2011). An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran. Renewable Energy, 36, 1808–1813. https://doi.org/10.1016/j.renene.2010.11.020

    Article  Google Scholar 

  21. Stolarski, M. J., Krzyżaniak, M., Warmiński, K., et al. (2017). Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers. Energy, 134, 50–60. https://doi.org/10.1016/j.energy.2017.05.195

    Article  Google Scholar 

  22. Karakaya, A., & Özilgen, M. (2011). Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes. Energy, 36, 5101–5110. https://doi.org/10.1016/j.energy.2011.06.007

    Article  Google Scholar 

  23. Angelini, L. G., Ceccarini, L., & Bonari, E. (2005). Biomass yield and energy balance of giant reed (Arundo donax L.) cropped in central Italy as related to different management practices. European Journal of Agronomy, 22, 375–389. https://doi.org/10.1016/j.eja.2004.05.004

    Article  Google Scholar 

  24. ASABE. (2015). D497.6: Agricultural machinery management data.

    Google Scholar 

  25. Bochtis, D., Sorensen, C. G., & Kateris, D. (2018). Operations management in agriculture (1st ed.). Elsevier.

    Google Scholar 

  26. Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25, 335–361.

    Article  Google Scholar 

  27. Vermerris, W. (2008). Genetic improvement of bioenergy crops. Springer.

    Book  Google Scholar 

  28. Angelini, L. G., Ceccarini, L., Nassi o Di Nasso, N., & Bonari, E. (2009). Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass and Bioenergy, 33, 635–643. https://doi.org/10.1016/j.biombioe.2008.10.005

    Article  Google Scholar 

  29. Mantineo, M., D’Agosta, G. M., Copani, V., et al. (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research, 9, 204–213. https://doi.org/10.1016/j.fcr.2009.07.020

    Article  Google Scholar 

  30. Vidyarthi, S. K., & Evans, M. E. (2019). Chapter 7: Development of new tomato products in a very consolidated market. In Food chemistry, function and analysis.

    Google Scholar 

  31. Martínez-Blanco, J., Muñoz, P., Antón, A., & Rieradevall, J. (2009). Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops. Resources, Conservation and Recycling, 53, 340–351. https://doi.org/10.1016/j.resconrec.2009.02.003

    Article  Google Scholar 

  32. Muñoz, P., Antón, A., Paranjpe, A., et al. (2008). High decrease in nitrate leaching by lower N input without reducing greenhouse tomato yield. Agronomy for Sustainable Development, 28, 489–495. https://doi.org/10.1051/agro:2008024

    Article  Google Scholar 

  33. Esengun, K., Erdal, G., Gündüz, O., & Erdal, H. (2007). An economic analysis and energy use in stake-tomato production in Tokat province of Turkey. Renewable Energy, 32, 1873–1881. https://doi.org/10.1016/j.renene.2006.07.005

    Article  Google Scholar 

  34. Moghaddam, P. R., Feizi, H., & Mondani, F. (2011). Evaluation of tomato production systems in terms of energy use efficiency and economical analysis in Iran. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 3, 58–65.

    Google Scholar 

  35. Jadidi, M. R., Sabuni, M. S., Homayounifar, M., & Mohammadi, A. (2012). Assessment of energy use pattern for tomato production in Iran: A case study from the Marand region. Research in Agricultural Engineering, 58, 50–56. https://doi.org/10.17221/32/2010-rae

    Article  Google Scholar 

  36. American Society of Agricultural and Biological Engineers. (2011). ASAE D497.7 MAR2011 agricultural machinery management data. ASABE. https://doi.org/10.1126/science.85.2210.446-a.

  37. Kitani, O. (1999). CIGR handbook of agricultural engineering. Volume V, CIGR–The I, ASAE Publication: St. Joseph, MI, USA.

    Google Scholar 

  38. Wells, C. (2001). Total energy indicators of agricultural sustainability: Dairy farming case study (Technical Paper 2001/3).

    Google Scholar 

  39. Barber, A. (2004). Seven case study farms: Total energy & carbon indicators for New Zealand Arable & Outdoor Vegetable Production. p. 46.

    Google Scholar 

  40. Saunders, C., Barber, A., & Taylor, G. (2006). Food miles—Comparative energy/emissions performance of New Zealand’s agriculture industry. Agribusiness & Economics Research Unit, Lincoln University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efthymios Rodias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodias, E., Evangelou, E., Lampridi, M., Bochtis, D. (2022). A Decision Support System for Green Crop Fertilization Planning. In: Bochtis, D.D., Sørensen, C.G., Fountas, S., Moysiadis, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme III: Decision. Springer Optimization and Its Applications, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-030-84152-2_13

Download citation

Publish with us

Policies and ethics