Skip to main content

Programmable Process Structures of Unified Elements for Model-Based Planning and Operation of Complex Agri-environmental Processes

  • 71 Accesses

Part of the Springer Optimization and Its Applications book series (SOIA,volume 184)

Abstract

Nowadays, complex agri-environmental systems are supported by new generations of sensors and data acquisition methodologies of Information Technology. However, the decisions about the integrated development of agriculture-related sustainable and resilient process networks require the consideration of the causally determined balances of the underlying complex interactions. Accordingly, the computer-assisted planning and operation of agri-environmental processes inspire the development of new, easily modifiable, extensible, and connectable modeling and simulation methodologies. In the past years, the method of Programmable Process Structures (PPS) has been implemented for studying of various complex agri-environmental processes. Here, PPS will be illustrated by case studies for a recirculation aquaculture system, for a complex food web-involved fishpond, and for an agroforestry system. The chapter aims to illustrate the role of dynamic modeling and simulation in support of planning and decisions at various levels, utilizing the same general framework of PPS.

Keywords

  • Agri-environmental processes
  • Dynamic modeling
  • Programmable Process Structures
  • Model-based decision
  • Sustainability-specific features
  • Aquaculture
  • Agroforestry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-84152-2_11
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-84152-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. CCAFS and UNFAO. (2014) Questions & Answers: Knowledge on Climate-Smart Agriculture. United Nations Food and Agriculture Organisation (UNFAO), . https://hdl.handle.net/10568/42432

    Google Scholar 

  2. Stephanopoulos, G., & Reklaitis, G. V. (2011). Process systems engineering: From Solvay to modern bio- and nanotechnology. A history of development, successes and prospects for the future. Chemical Engineering Science, 66, 4272–4306. https://doi.org/10.1016/j.ces.2011.05.049

    CrossRef  Google Scholar 

  3. Grossmann, I. E., & Westerberg, A. W. (2000). Research challenges in process systems engineering. AICHE Journal, 46, 1700–1703. https://doi.org/10.1002/aic.690460902

    CrossRef  Google Scholar 

  4. Breslow, R., et al. (2003). Beyond the molecular frontier: Challenges for chemistry and chemical engineering. In Committee on challenges for the chemical sciences in the 21st century. National Research Council.

    Google Scholar 

  5. Klatt, K. U., & Marquardt, W. (2009). Perspectives for process systems engineering-Personal views from academia and industry. Computers and Chemical Engineering, 33, 536–550. https://doi.org/10.1016/j.compchemeng.2008.09.002

    CrossRef  Google Scholar 

  6. Bakshi, B. R. (2014). Methods and tools for sustainable process design. Current Opinion in Chemical Engineering, 6, 69–74. https://doi.org/10.1016/j.coche.2014.09.005

    CrossRef  Google Scholar 

  7. Bogle, D., & Fairweather, M. (2013). Special issue—Computer Aided Process Engineering (CAPE) tools for a sustainable world. Chemical Engineering Research and Design, 91, 1371–1372. https://doi.org/10.1016/j.cherd.2013.07.001

    CrossRef  Google Scholar 

  8. Stephanopoulos, G., & Schmitt, W. A. (2001). Systems Biology: An emerging theme in biological research. Computer Aided Chemical Engineering, 9, 55–68. https://doi.org/10.1016/S1570-7946(01)80006-7

    CrossRef  Google Scholar 

  9. Bogle, I. D. L., Allen, R., & Sumner, T. (2010). The role of Computer Aided Process Engineering in physiology and clinical medicine. Computers and Chemical Engineering, 34, 763–769. https://doi.org/10.1016/j.compchemeng.2009.10.021

    CrossRef  Google Scholar 

  10. Ahmetović, E., Ibrić, N., Kravanja, Z., & Grossmann, I. E. (2015). Water and energy integration: A comprehensive literature review of non-isothermal water network synthesis. Computers and Chemical Engineering, 82, 144–171. https://doi.org/10.1016/j.compchemeng.2015.06.011

    CrossRef  Google Scholar 

  11. Estrada, V., Di Maggio, J., & Diaz, M. S. (2011). Water sustainability: A systems engineering approach to restoration of eutrophic Lakes. Computers and Chemical Engineering, 35, 1598–1613. https://doi.org/10.1016/j.compchemeng.2011.03.003

    CrossRef  Google Scholar 

  12. Varga, M., Balogh, S., & Csukas, B. (2016). An extensible, generic environmental process modeling framework with an example for a watershed of a shallow lake. Environmental Modelling & Software, 75, 243–262. https://doi.org/10.1016/j.envsoft.2015.10.022

    CrossRef  Google Scholar 

  13. Adams, T. A., II. (2015). Future opportunities and challenges in the design of new energy conversion systems. Computers and Chemical Engineering, 81, 94–103. https://doi.org/10.1016/j.compchemeng.2015.04.029

    CrossRef  Google Scholar 

  14. Eleftherios, I., Bochtis, D., & Vlachos, D. A. (Eds.). (2016). Supply chain management for sustainable food networks. Wiley.

    Google Scholar 

  15. Varga, M., Balogh, S., & Csukas, B. (2010). Sector spanning agrifood process transparency with Direct Computer Mapping. Agricultural Informatics, 1, 73–83.

    Google Scholar 

  16. Copado-Méndez, P. J., Pozo, C., Guillén-Gosálbez, G., & Jiménez, L. (2016). Enhancing the ε-constraint method through the use of objective reduction and random sequences: Application to environmental problems. Computers and Chemical Engineering, 87, 36–48. https://doi.org/10.1016/j.compchemeng.2015.12.016

    CrossRef  Google Scholar 

  17. Garcia, D. J., & You, F. (2016). The water-energy-food nexus and process systems engineering: A new focus. Computers and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2016.03.003

  18. Yue, D., You, F., & Snyder, S. W. (2014). Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers and Chemical Engineering, 66, 36–56. https://doi.org/10.1016/j.compchemeng.2013.11.016

    CrossRef  Google Scholar 

  19. Rosenthal, R. (2008). GAMS—A user’s guide. GAMS Development Corporation.

    Google Scholar 

  20. Moral, H., Aksoy, A., & Gokcay, C. F. (2008). Modelling of the activated sludge process by using artificial neural networks with automated architecture screening. Computers and Chemical Engineering, 32, 2471–2478. https://doi.org/10.1016/j.compchemeng.2008.01.008

    CrossRef  Google Scholar 

  21. Nicoletti, M. C., & Jain, L. C. (Eds.). (2009). Computational intelligence techniques for bioprocess modelling, supervision and control, studies. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-01888-6

    CrossRef  MATH  Google Scholar 

  22. Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro, P. M., Engell, S., Grossmann, I. E., Hooker, J., Méndez, C., Sand, G., & Wassick, J. (2014). Scope for industrial applications of production scheduling models and solution methods. Computers and Chemical Engineering, 62, 161–193. https://doi.org/10.1016/j.compchemeng.2013.12.001

    CrossRef  Google Scholar 

  23. Forrester, J. W. (1961). Industrial dynamics. Pegasus Communications.

    Google Scholar 

  24. Espinoza, A., Bautista, S., Narváez, P. C., Alfaro, M., & Camargo, M. (2017). Sustainability assessment to support governmental biodiesel policy in Colombia: A system dynamics model. Journal of Cleaner Production, 141, 1145–1163. https://doi.org/10.1016/j.jclepro.2016.09.168

    CrossRef  Google Scholar 

  25. Nabavi, E., Daniell, K. A., & Najafi, H. (2017). Boundary matters: The potential of system dynamics to support sustainability? Journal of Cleaner Production, 140(1), 312–323.

    CrossRef  Google Scholar 

  26. Amadou, M. L., Villamor, G. B., & Kyei-Baffour, N. (2018). Simulating agricultural land-use adaptation decisions to climate change: An empirical agent-based modelling in northern Ghana. Agricultural Systems, 166, 196–209.

    CrossRef  Google Scholar 

  27. Fernandez-Mena, H., Gaudou, B., Pellerin, S., MacDonald, G. K., & Nesme, T. (2020). Flows in Agro-food Networks (FAN): An agent-based model to simulate local agricultural material flows. Agricultural Systems, 102718. https://doi.org/10.1016/j.agsy.2019.102718

  28. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

    MathSciNet  CrossRef  Google Scholar 

  29. Newman, M., Barabási, A. L., & Watts, D. J. (Eds.). (2006). The structure and dynamics of networks. Princeton University Press.

    Google Scholar 

  30. Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268–276.

    CrossRef  Google Scholar 

  31. Caldarelli, G. (2007). Scale-free networks: Complex webs in nature and technology. Oxford University Press.

    CrossRef  Google Scholar 

  32. Steuer, R., & Zamora-López, G. (2008). Global properties of networks. Chapter 3. In B. H. Junker & F. Scrheiber (Eds.), Analysis of biological networks. Wiley. https://doi.org/10.1002/9780470253489

    CrossRef  Google Scholar 

  33. Alberghina, L., & Westerhoff, H. V. (2005). Systems biology: Definitions and perspectives. Springer-Verlag.

    CrossRef  Google Scholar 

  34. Jordan, F., Scheuring, I., Vasas, V., & Podani, J. (2006). Architectural classes of aquatic food webs based on link distribution. Community Ecology, 7, 81–90.

    CrossRef  Google Scholar 

  35. Fellman, P. V., Bar-Yam, Y., & Minai, A. A. (Eds.). (2015). Conflict and complexity, Countering terrorism, insurgency, ethnic and regional violence. Springer-Verlag.

    Google Scholar 

  36. Csermely, P., Korcsmáros, T., Kiss, H. J., London, G., & Nussinov, R. (2013). Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacology & Therapeutics, 138(3), 333–408. https://doi.org/10.1016/j.pharmthera.2013.01.016

    CrossRef  Google Scholar 

  37. Liu, Y. Y., Slotine, J. J., & Barabasi, A. L. (2011). Controllability of complex networks. Nature, 473, 167–173.

    CrossRef  Google Scholar 

  38. Brauer, W. (Ed.). (1980). Net theory and applications (Vol. 84). Springer Lecture Notes in Computer Science.

    MATH  Google Scholar 

  39. Petri, C.A. (1966). Communication with automata. Supplement1 to Techn. Report RADC-TR-65-377, Vol. 1 Griffiss AFB, New York. Original in German (Kommunikation mit Automaten, Univ. of Bonn, 1962).

    Google Scholar 

  40. Chen, M., & Hofestädt, R. (2003). Quantitative Petri net model of gene regulated metabolic networks in the cell. Silico Biology, 3(0029), 347–365.

    Google Scholar 

  41. Peleg, M., Rubin, D., & Altman, R. B. (2005). Using petri tools to study properties and dynamics of biological systems. Journal of the American Medical Informatics Association, 12(2), 181–199.

    CrossRef  Google Scholar 

  42. Varga, M., & Csukas, B. (2017a). Generation of extensible ecosystem models from a network structure and from locally executable programs. Ecological Modelling, 364, 25–41. https://doi.org/10.1016/j.ecolmodel.2017.09.014

    CrossRef  Google Scholar 

  43. Varga, M., & Csukas, B. (2017b). Programmable Process Structures, generated from a network and from functional meta-prototypes. In 2017 AIChE Annual Meeting, Minneapolis, MN, Paper #448e.

    Google Scholar 

  44. Csukás, B., Varga, M., Miskolczi, N., Balogh, S., Angyal, A., & Bartha, L. (2013). Simplified dynamic simulation model of plastic waste pyrolysis in laboratory and pilot scale tubular reactor. Fuel Processing Technology, 106, 186–200. https://doi.org/10.1016/j.fuproc.2012.07.024

    CrossRef  Google Scholar 

  45. Audino, F., Varga, M., Pérez-Moya, M., Graells, M., Espuña, A., & Csukás, B. (2018). Experiments and direct computer mapping based model for photo-fenton process. Computer Aided Chemical Engineering., 43, 223–228. https://doi.org/10.1016/B978-0-444-64235-6.50040-1

    CrossRef  Google Scholar 

  46. Varga, M., & Csukas, B. (2018). Meta-modeling of Hydrogen Supply Chains: A Programmable Structure based representation. In C. Azzaro-Pantel (Ed.), Hydrogen supply chain. Design, deployment and operation (1st ed.). Elsevier. https://www.elsevier.com/books/hydrogen-supply-chain/azzaro-pantel/978-0-12-811197-0.

    Google Scholar 

  47. Tankovics, A., Takács, D., Szendefy, J., Csukás, B., & Varga, M. (2019). Residence time distribution-based analysis of an industrial-scale biogas fermenter. Hungarian Journal of Industrial Chemistry, 47(2), 43–51.

    Google Scholar 

  48. Varga, M., Prokop, A., & Csukas, B. (2017). Biosystem models, generated from a complex rule/reaction/influence network and from two functionality prototypes. Biosystems, 152, 24–43. https://doi.org/10.1016/j.biosystems.2016.12.005

    CrossRef  Google Scholar 

  49. Varga, M., Csukas, B., & Kucska, B. (2020a). Implementation of an easily reconfigurable dynamic simulator for Recirculating Aquaculture Systems. Aquacultural Engineering, 90, 102073. https://doi.org/10.1016/j.aquaeng.2020.102073

    CrossRef  Google Scholar 

  50. Varga, M., Berzi-Nagy, L., Csukas, B., & Gyalog, G. (2020b). Long-term dynamic simulation of environmental impacts on ecosystem-based pond aquaculture. Environmental Modelling & Software, 134, 104755. https://doi.org/10.1016/j.envsoft.2020.104755

    CrossRef  Google Scholar 

  51. Varga, M., Raso, J., Keseru, Z. S., & Csukas, B. (2019). Generation of configurable and extensible, multiscale models for dynamic simulation of complex agroforestry systems. In Poster L24.P.16. 4th World Congress on Agroforestry, Montpellier, France.

    Google Scholar 

  52. Heldbo, J., & Klee, P. (2014). Rethinking aquaculture to boost resource and production efficiency. In Sea and land-based aquaculture solutions for farming high quality seafood The Rethink Water network and Danish Water Forum White Papers, Copenhagen. Retrieved from www.rethinkwater.dk.

  53. FAO. (2011). The state of the world’s land and water resources for food and agriculture (SOLAW)—Managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London. Retrieved January 22, 2020, from http://www.fao.org/3/a-i1688e.pdf

Download references

Acknowledgments

The research was supported by the European Social Fund and Hungarian Government via the EFOP-3.6.2-16-2017-00018 “Let’s co-produce with the nature! Agro-forestry, as a new outbreak” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Varga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Varga, M., Gyalog, G., Raso, J., Kucska, B., Csukas, B. (2022). Programmable Process Structures of Unified Elements for Model-Based Planning and Operation of Complex Agri-environmental Processes. In: Bochtis, D.D., Sørensen, C.G., Fountas, S., Moysiadis, V., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme III: Decision. Springer Optimization and Its Applications, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-030-84152-2_11

Download citation