Skip to main content

Air drill Seeder Distributor Head Evaluation: A Comparison between Laboratory Tests and Computational Fluid Dynamics Simulations

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme II: Data

Abstract

In this work, a commercial distributor head is evaluated. In parallel, both numerical simulations and laboratory tests, in a bench test belonging to the National University of Rosario, are carried out. This test bench has been built to evaluate components of air drill seeder’s pneumatic transport and distribution system. Soybean (Glycine max) seeds are used in the experimental tests. In Computational Fluid Dynamics (CFD) simulations, soybean seeds are modeled as spherical, rigid, and uniform size particles. The CFD simulations of the air-seed mixture are carried out with the commercial software ANSYS Fluent, and particle trajectories are numerically computed using a Lagrangian approach. A two-way coupling method is used, named Discrete Phase Model (DPM). Results show that numerical simulations are consistent with the laboratory tests, obtained in controlled trials. In both cases, the highest flow rates of seeds are produced in frontal outlets, while rear outlets present the lowest flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saikai, Y., Patel, V., & Mitchell, P. D. (2020). Machine learning for optimizing complex site–specific management. Computers and Electronics in Agriculture, 174, 105381. https://doi.org/10.1016/j.compag.2020.105381

    Article  Google Scholar 

  2. Bragachini, M. (2019). Adopción de tecnología en el sector agropecuario argentino en los últimos 28 años. Technical report - INTA Manfredi. http://www.agriculturadeprecision.org/descargaItem.asp?item=%2Farticulos%2Fmaquinaria%2Dagricola%2FAdopcion%2DTecnologia%2DSector%2DAgrop%2DArgentino%2Dultimos%2D28%2Danios%2Epdf. Accessed 10 Feb 2020.

  3. Nielsen, R. (1995). Planting speed effects on stand establishment and grain yield of corn. Journal of Production Agriculture, 8(3), 391–393. https://doi.org/10.2134/jpa1995.0391

    Article  Google Scholar 

  4. Liu, W., Tollenaar, M., Stewart, G., & Deen, W. (2004). Within–row plant spacing variability does not affect corn yield. Agronomy Journal, 96(1), 275–280. https://doi.org/10.2134/agronj2004.2750

    Article  Google Scholar 

  5. Yatskul, A., Lemiere, J. P., & Cointault, F. (2017). Influence of the divider head functioning conditions and geometry on the seed’s distribution accuracy of the air-seeder. Biosystems Engineering, 161, 120–134. https://doi.org/10.1016/j.biosystemseng.2017.06.015

    Article  Google Scholar 

  6. ASABE S506OCT2010 (R2014) Terminology and Definitions for Planters, Drills and Seeders (2010) American society of agricultural and biological engineers’ standards: St. .

    Google Scholar 

  7. Allam, R. K., & Wiens, H. (1983). An investigation of air seeder component characteristics. Tech. Rep., Prairie Agricultural Machinery Institute, Lethbridge, Alberta.

    Google Scholar 

  8. Allen, R. R. (1988). Performance of three wheat seeders in conservation tillage residue. Applied Engineering in Agriculture, 4(3), 191–196.

    Article  Google Scholar 

  9. Kumar, V. F., Durairaj, C. D., & Balasurbramanian, M. (1999). Air assisted drill for small seeds. Journal of Agricultural and Engineering Research, 8(4), 259–265.

    Google Scholar 

  10. Kumar, V., & Durairaj, C. (2001). Influence of distributor head on the seed trajectory within the feeder plenum of an air drill. International Agricultural Engineering Journal, 10(3-4), 255–267.

    Google Scholar 

  11. McCartney, D., Boyden, A., & Stevenson, C. (2005). Development of agitators for seeding forages using air delivery systems. Journal of Rangeland Ecology and Management, 58(2), 199–203.

    Article  Google Scholar 

  12. Yatskul, A., & Lemiere, J. (2014). Experimental determination of flow concentration for pneumatic conveying systems of air-seeders. INMATEH - Agricultural Engineering, 44(3), 19–26.

    Google Scholar 

  13. Yatskul, A., Lemiere, J. P., & Cointault, F. (2018). Comparative energy study of the air-stream loading systems of air-seeders. Engineering in Agriculture, Environment and Food, 11(1), 30–37. https://doi.org/10.1016/j.eaef.2017.09.003

    Article  Google Scholar 

  14. Yatskul, A., & Lemiere, J. P. (2018). Establishing the conveying parameters required for the air-seeders. Biosystems Engineering, 166, 1–12. https://doi.org/10.1016/j.biosystemseng.2017.11.001

    Article  Google Scholar 

  15. Bayati, M., & Johnston, C. (2017). CFD-DEM investigation of seed clustering in an air seeder with the immersed boundary method. Grande Prairie.

    Google Scholar 

  16. Lei, X., Liao, Y., Wang, L., Wang, D., Yao, L., & Liao, Q. (2017). Simulation of gas- solid two-phase flow and parameter optimization of pressurized tube of air- assisted centralized metering device for rapeseed and wheat. Transactions of the Chinese Society of Agricultural Engineering, 33(19), 67–75.

    Google Scholar 

  17. Lei, X., Liao, Y., Zhang, Q., Wang, L., & Liao, Q. (2018). Numerical simulation of seed motion characteristics of distribution head for rapeseed and wheat. Computers and Electronics in Agriculture, 150, 98–109. https://doi.org/10.1016/j.compag.2018.04.009

    Article  Google Scholar 

  18. Dai, Y., Luo, X., Wang, Z., Zeng, S., Zang, Y., Yang, W., Zhang, M., Wang, B., & Xing, H. (2016). Design and experiment of rice pneumatic centralized seed distributor. Nongye Gongcheng Xuebao /Transactions of the Chinese Society of Agricultural Engineering, 32, 3642. https://doi.org/10.11975/j.issn.10026819.2016.24.005

    Article  Google Scholar 

  19. Pyataev, M., & Zyryanov, A. (2018). Defining rational parameters of a dividing head in a pneumatic grain seeding machine. The bulletin of the KrasGAU, 3, 88–94.

    Google Scholar 

  20. Konovalov, V., Kravtsov, A., Zaitsev, V., Petrov, A., & Petrova, S. (2019). Pneumatic system of a seeder with pneumatic sowing. IOP Conference Series: Earth and Environmental Science, 403, 012,131. https://doi.org/10.1088/1755-1315/403/1/012131

    Article  Google Scholar 

  21. Mudarisov, S., & Sharafutdinov, A. (2019). Justification of constructive and technological parameters of the horizontal distributor of the pneumatic seeder. Vestnik of the Bashkir State Agrarian University, 49(1), 133–140. https://doi.org/10.31563/1684-7628-2019-49-1-133-140

    Article  Google Scholar 

  22. Mudarisov, S., Sharafutdinov, A., & Farkhutdinov, I. (2019). More precise seed placement with a horizontal seed spreader of an air planter. Vestnik of the Bashkir State Agrarian University, 50(2), 131–136. https://doi.org/10.31563/1684-7628-2019-50-2-131-136

    Article  Google Scholar 

  23. Mudarisov, S., Badretdinov, I., Rakhimov, Z., Lukmanov, R., & Nurullin, E. (2020). Numerical simulation of two-phase “air-seed” flow in the distribution system of the grain seeder. Computers and Electronics in Agriculture, 168, 105,151. https://doi.org/10.1016/j.compag.2019.105151

    Article  Google Scholar 

  24. Kravtsov, A. V., Konovalov, V. V., Zaitsev, V. Y., Petrov, A. M., & Petrova, S. (2020). Simulation of the pneumatic system of a seed drill with a vertical flow direction. KnE Life Sciences. https://doi.org/10.18502/kls.v5i1.6060

  25. Bourges, G. (2019). Sistemas de siembra neumáticos. Editorial Académica Española.

    Google Scholar 

  26. Crowe, C. T. (2005). Multiphase flow handbook. CRC Press. https://doi.org/10.1201/9781420040470

    Book  MATH  Google Scholar 

  27. Lim, E. W. C., Wang, C. H., & Yu, A. B. (2006). Discrete element simulation for pneumatic conveying of granular material. AICHE Journal, 52(2), 496–509. https://doi.org/10.1002/aic.10645

    Article  Google Scholar 

  28. Mohammadreza, E. (2014). Cfd-dem modelling of two-phase pneumatic conveying with experimental validation. PhD thesis, The University of Edinburgh, http://hdl.hadle.net/1842/9693.

  29. Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied Scientific Research, 52(4), 309–329. https://doi.org/10.1007/bf00936835

    Article  Google Scholar 

  30. Lun, C. K. K., & Bent, A. A. (1994). Numerical simulation of inelastic frictional spheres in simple shear flow. Journal of Fluid Mechanics, 258, 335–353. https://doi.org/10.1017/s0022112094003356

    Article  Google Scholar 

  31. Lun, C. K. K., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. Journal of Fluid Mechanics, 140, 223–256. https://doi.org/10.1017/s0022112084000586

    Article  MATH  Google Scholar 

  32. Wilcox, D. (2006). Turbulence Modeling for CFD. DCW Industries.

    Google Scholar 

  33. Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24(3), 227–238. https://doi.org/10.1016/00457930(94)00032-t

    Article  MATH  Google Scholar 

  34. ANSYS Fluent 160. (2014). Fluent theory guide.

    Google Scholar 

  35. Morsi, S. A., & Alexander, A. J. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55(02), 193. https://doi.org/10.1017/s0022112072001806

    Article  MATH  Google Scholar 

  36. Zhang, X., & Vu-Quoc, L. (2000). Simulation of chute flow of soybeans using an improved tangential force displacement model. Mechanics of Materials, 32(2), 115–129. https://doi.org/10.1016/s01676636(99)00043-5

    Article  Google Scholar 

  37. Israel, R., & Rosner, D. E. (1982). Use of a generalized stokes number to deter- mine the aerodynamic capture efficiency of non-stokesian particles from a compressible gas flow. Aerosol Science and Technology, 2(1), 45–51. https://doi.org/10.1080/02786828308958612

    Article  Google Scholar 

  38. Rao, A., Curtis, J., Hancock, B., & Wassgren, C. (2011). Numerical simulation of di- lute turbulent gas-particle flow with turbulence modulation. AICHE Journal, 58(5), 1381–1396. https://doi.org/10.1002/aic.12673

    Article  Google Scholar 

  39. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591. https://doi.org/10.2307/2333709

    Article  MathSciNet  MATH  Google Scholar 

  40. Mendenhall, W., Beaver, R. J., & Beaver, B. M. (2007). Introducciónn a la probabilidad y estadística Ed. 12. Thomson Learning.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Faculty of Exact Sciences, Engineering and Surveying (FCEIA) of the National University of Rosario (UNR), the National Institute of Industrial Technology (INTI), and National Scientific and Technical Research Council (CONICET) for making possible the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Rubio Scola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rubio Scola, I., Rossi, S., Bourges, G. (2022). Air drill Seeder Distributor Head Evaluation: A Comparison between Laboratory Tests and Computational Fluid Dynamics Simulations. In: Bochtis, D.D., Moshou, D.E., Vasileiadis, G., Balafoutis, A., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme II: Data. Springer Optimization and Its Applications, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-030-84148-5_8

Download citation

Publish with us

Policies and ethics