Skip to main content

Integrating Spatial with Qualitative Data to Monitor Land Use Intensity: Evidence from Arable Land – Animal Husbandry Systems

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme II: Data

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 183))

  • 361 Accesses

Abstract

This chapter investigates changes in land use intensity in a crop-livestock farming system on Lemnos Island through the combination of land use/land cover (LULC) types extracted from black and white (B&W) aerial images, statistics, and qualitative data. Combining quantitative and qualitative data, different insights of land use and landscape changes are assessed. The steps are: first, the timeline of historical changes was compiled; then, remote sensing was used to assess land cover changes and conversions that represent changes in intensity, and this information was complemented by participatory mapping with local farmers. Land use trajectories revealed that extensification is the basic trend from 1960 to 2002. Intensification coexists in at the same time, as grasslands convert to crops. There is a distinct pattern between periods: extensification seems to be the main process of change from 1960 to 1980 affecting mainly the hilly uplands as more remote and marginal areas are being converted from crops to grasslands or are abandoned, whereas intensification is the main trend for the next 20 years mainly in the lowlands as modernized agriculture (irrigated fields, land aggregation, machinery use) replaces more extensive land uses and traditional landscape elements such as tree hedges. The role of complementarity is very important. Conclusively, this case study shows that in some farming systems land use intensity changes cannot be represented through simple dichotomist differentiations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis, K. F., Gephart, J. A., Emery, K. A., et al. (2016). Meeting future food demand with current agricultural resources. Global Environmental Change. https://doi.org/10.1016/j.gloenvcha.2016.05.004

  2. Smith, P., House JI, Bustamante, M., et al. (2016). Global change pressures on soils from land use and management. Global Change Biology. https://doi.org/10.1111/gcb.13068

  3. Foley, J. A. (2011). Can we feed the world & sustain the planet? Scientific American. https://doi.org/10.1038/scientificamerican1111-60

  4. Schröter, D., Cramer, W., Leemans, R., et al. (2005). Ecology: Ecosystem service supply and vulnerability to global change in Europe. Science, 80. https://doi.org/10.1126/science.1115233

  5. Herzog, F., Steiner, B., Bailey, D., et al. (2006). Assessing the intensity of temperate European agriculture at the landscape scale. European Journal of Agronomy. https://doi.org/10.1016/j.eja.2005.07.006

  6. Stoate, C., Báldi, A., Beja, P., et al. (2009). Ecological impacts of early 21st century agricultural change in Europe - a review. Journal of Environmental Management.

    Google Scholar 

  7. Tilman, D., Cassman, K. G., Matson, P. A., et al. (2002). Agricultural sustainability and intensive production practices. Nature.

    Google Scholar 

  8. Kuemmerle, T., Erb, K., Meyfroidt, P., et al. (2013). Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environment Sustainability.

    Google Scholar 

  9. Di Gregorio, A., & Jansen, L. J. M. (2000). Land cover classification system (LCCS): Classification concepts and user manual. FAO. https://doi.org/10.1017/CBO9781107415324.004

  10. Lambin, E. F., Geist, H., & Rindfuss, R. R. (2008). Introduction: Local processes with global impacts. In Land-use and land-cover change.

    Google Scholar 

  11. Fisher, P., & Unwin, D. (2005). Land use and land cover: Contradiction or complement. In Re-presenting GIS.

    Google Scholar 

  12. Bürgi, M., Bieling, C., von Hackwitz, K., et al. (2017). Processes and driving forces in changing cultural landscapes across Europe. Landscape Ecology. https://doi.org/10.1007/s10980-017-0513-z

  13. Erb, K. H., Haberl, H., Jepsen, M. R., et al. (2013). A conceptual framework for analysing and measuring land-use intensity. Current Opinion in Environment Sustainability.

    Google Scholar 

  14. Binswanger, H. P., & Rosenzweig, M. R. (1986). Behavioural and material determinants of production relations in agriculture. Journal of Development Studies. https://doi.org/10.1080/00220388608421994

  15. Matson, P. A. (1997). Agricultural intensification and ecosystem properties. Science, 277(80), 504–509. https://doi.org/10.1126/science.277.5325.504

    Article  Google Scholar 

  16. Beeson, P. C., Daughtry, C. S. T., Hunt, E. R., et al. (2016). Multispectral satellite mapping of crop residue cover and tillage intensity in Iowa. Journal of Soil and Water Conservation. https://doi.org/10.2489/jswc.71.5.385

  17. Estel, S., Kuemmerle, T., Levers, C., et al. (2016). Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environmental Research Letters. https://doi.org/10.1088/1748-9326/11/2/024015

  18. Temme, A. J. A. M., & Verburg, P. H. (2011). Mapping and modelling of changes in agricultural intensity in Europe. Agriculture, Ecosystems and Environment. https://doi.org/10.1016/j.agee.2010.11.010

  19. Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop yield assessment from remote sensing. Photogramm. Eng. Remote Sensing.

    Google Scholar 

  20. Fang, H., Liang, S., & Hoogenboom, G. (2011). Integration of MODIS LAI and vegetation index products with the CSM-CERES-maize model for corn yield estimation. International Journal of Remote Sensing. https://doi.org/10.1080/01431160903505310

  21. Prasad, A. K., Chai, L., Singh, R. P., & Kafatos, M. (2006). Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2005.06.002

  22. Bubová, T., Vrabec, V., Kulma, M., & Nowicki, P. (2015). Land management impacts on European butterflies of conservation concern: A review. Journal of Insect Conservation.

    Google Scholar 

  23. De Palma, A., Kuhlmann, M., Roberts, S. P. M., et al. (2015). Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.12524

  24. Frenzel, M., Everaars, J., & Schweiger, O. (2016). Bird communities in agricultural landscapes: What are the current drivers of temporal trends? Ecological Indicators. https://doi.org/10.1016/j.ecolind.2015.11.020

  25. Liu, Y., Rothenwöhrer, C., Scherber, C., et al. (2014). Functional beetle diversity in managed grasslands: Effects of region, landscape context and land use intensity. Landscape Ecology, 29, 529–540. https://doi.org/10.1007/s10980-014-9987-0

    Article  Google Scholar 

  26. de Groot, R. S., Alkemade, R., Braat, L., et al. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity. https://doi.org/10.1016/j.ecocom.2009.10.006

  27. Rega, C., & Spaziante, A. (2013). Linking ecosystem services to Agri-environmental schemes through SEA: A case study from northern Italy. Environmental Impact Assessment Review. https://doi.org/10.1016/j.eiar.2012.09.002

  28. Chen, N., Li, H., & Wang, L. (2009). A GIS-based approach for mapping direct use value of ecosystem services at a county scale: Management implications. Ecological Economics. https://doi.org/10.1016/j.ecolecon.2008.12.001

  29. Maes, J., Egoh, B., Willemen, L., et al. (2012). Mapping ecosystem services for policy support and decision making in the European Union. Ecosystem Services, 1, 31–39. https://doi.org/10.1016/j.ecoser.2012.06.004

    Article  Google Scholar 

  30. Mouchet, M. A., Paracchini, M. L., Schulp, C. J. E., et al. (2017). Bundles of ecosystem (dis)services and multifunctionality across European landscapes. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2016.09.026

  31. Plieninger, T., Dijks, S., Oteros-Rozas, E., & Bieling, C. (2013). Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy. https://doi.org/10.1016/j.landusepol.2012.12.013

  32. Sherrouse, B. C., Clement, J. M., & Semmens, D. J. (2011). A GIS application for assessing, mapping, and quantifying the social values of ecosystem services. Applied Geography. https://doi.org/10.1016/j.apgeog.2010.08.002

  33. Alcantara, C., Kuemmerle, T., Prishchepov, A. V., & Radeloff, V. C. (2012). Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sensing of Environment, 124, 334–347. https://doi.org/10.1016/j.rse.2012.05.019

    Article  Google Scholar 

  34. Redo, D. J., & Millington, A. C. (2011). A hybrid approach to mapping land-use modification and land-cover transition from MODIS time-series data: A case study from the Bolivian seasonal tropics. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2010.09.007

  35. Godinot, O., Leterme, P., Vertès, F., & Carof, M. (2016). Indicators to evaluate agricultural nitrogen efficiency of the 27 member states of the European Union. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2016.02.007

  36. Kerr, J. T., & Cihlar, J. (2003). Land use and cover with intensity of agriculture for Canada from satellite and census data. Global Ecology and Biogeography. https://doi.org/10.1046/j.1466-822X.2003.00017.x

  37. Dixon, J., Gulliver, A., & Gibbon, D. (2001). Farming systems and poverty: Improving farmers’ livelihoods in a changing world.

    Google Scholar 

  38. Bell, L. W., & Moore, A. D. (2012). Integrated crop–livestock systems in Australian agriculture: Trends, drivers and implications. Agricultural Systems, 111, 1–12. https://doi.org/10.1016/j.agsy.2012.04.003

    Article  Google Scholar 

  39. Moraine, M., Duru, M., Nicholas, P., et al. (2014). Farming system design for innovative crop-livestock integration in Europe. Animal. https://doi.org/10.1017/S1751731114001189

  40. Bégué, A., Arvor, D., Bellon, B., et al. (2018). Remote sensing and cropping practices: A review. Remote Sensing.

    Google Scholar 

  41. Defourny, P., Bontemps, S., Bellemans, N., et al. (2019). Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2018.11.007

  42. Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2019.111402

  43. Yin, H., Prishchepov, A. V., Kuemmerle, T., et al. (2018). Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2018.02.050

  44. Kolecka, N. (2018). Height of successional vegetation indicates moment of agricultural land abandonment. Remote Sensing. https://doi.org/10.3390/rs10101568

  45. Prishchepov, A. V., Radeloff, V. C., Dubinin, M., & Alcantara, C. (2012). The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2012.08.017

  46. Dubovyk, O., Menz, G., Conrad, C., et al. (2013). Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-012-2904-6

  47. Liu, X., & Bo, Y. (2015). Object-based crop species classification based on the combination of airborne hyperspectral images and LiDAR data. Remote Sensing, 7, 922–950. https://doi.org/10.3390/rs70100922

    Article  Google Scholar 

  48. Foody, G. M., & Mathur, A. (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42, 1335–1343. https://doi.org/10.1109/TGRS.2004.827257

    Article  Google Scholar 

  49. Phiri, D., & Morgenroth, J. (2017). Developments in landsat land cover classification methods: A review. Remote Sensing, 9, 967. https://doi.org/10.3390/rs9090967

    Article  Google Scholar 

  50. Sohn, Y., & Rebello, N. S. (2002). Supervised and unsupervised spectral angle classifiers. Photogrammetric Engineering & Remote Sensing, 68, 1271–1280.

    Google Scholar 

  51. Strahler, A. H. (1980). The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sensing of Environment, 10, 135–163. https://doi.org/10.1016/0034-4257(80)90011-5

    Article  Google Scholar 

  52. Vasilakos, C., Kavroudakis, D., & Georganta, A. (2020). Machine learning classification ensemble of multitemporal Sentinel-2 images: The case of a mixed mediterranean ecosystem. Remote Sensing. https://doi.org/10.3390/rs12122005

  53. Walter, V. (2004). Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 225–238. https://doi.org/10.1016/j.isprsjprs.2003.09.007

    Article  Google Scholar 

  54. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing.

    Google Scholar 

  55. Li, Q., Wang, C., Zhang, B., & Lu, L. (2015). Object-based crop classification with landsat-MODIS enhanced time-series data. Remote Sensing, 7, 16091–16107. https://doi.org/10.3390/rs71215820

    Article  Google Scholar 

  56. Goodin, D. G., Anibas, K. L., & Bezymennyi, M. (2015). Mapping land cover and land use from object-based classification: An example from a complex agricultural landscape. International Journal of Remote Sensing, 36, 4702–4723. https://doi.org/10.1080/01431161.2015.1088674

    Article  Google Scholar 

  57. Csillik, O., Belgiu, M., Asner, G. P., & Kelly, M. (2019). Object-based time-constrained dynamic time warping classification of crops using Sentinel-2. Remote Sensing. https://doi.org/10.3390/rs11101257

  58. Watkins, B., & Van Niekerk, A. (2019). Automating field boundary delineation with multi-temporal Sentinel-2 imagery. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2019.105078

  59. Crespin-Boucaud, A., Lebourgeois, V., Lo Seen, D., et al. (2020). Agriculturally consistent mapping of smallholder farming systems using remote sensing and spatial modelling. ISPRS - Int Arch Photogramm Remote Sens Spat Inf Sci, XLII-3(W11), 35–42. https://doi.org/10.5194/isprs-archives-XLII-3-W11-35-2020

    Article  Google Scholar 

  60. Morgan, J. L., Gergel, S. E., & Coops, N. C. (2010). Aerial photography: A rapidly evolving tool for ecological management. Bioscience. https://doi.org/10.1525/bio.2010.60.1.9

  61. Vogels, M. F. A., de Jong, S. M., Sterk, G., & Addink, E. A. (2017). Agricultural cropland mapping using black-and-white aerial photography, object-based image analysis and random forests. International Journal of Applied Earth Observation and Geoinformation, 54, 114–123. https://doi.org/10.1016/j.jag.2016.09.003

    Article  Google Scholar 

  62. Panitsa, M., Snogerup, B., Snogerup, S., & Tzanoudakis, D. (2003). Floristic investigation of Lemnos island (NE Aegean area, Greece). Willdenowia, 33, 79–105. https://doi.org/10.3372/wi.33.33108

    Article  Google Scholar 

  63. ELSTAT. (2019). Hellenic Statistical Authority. https://www.statistics.gr/en/home/. Accessed 29 Mar 2019.

  64. Dimopoulos, T., Dimitropoulos, G., & Georgiadis, N. (2018). The land use systems of Lemnos island. Terra Lemnia project: Recording of land use systems & practices. Strategy 1.1, action 1.1.1. https://terra-lemnia.net/wp-content/uploads/2019/04/Terra-Lemnia-1.1.1-Land-Use-Systems-of-Lemnos-Dec-2018.pdf. Accessed 18 Apr 2020.

  65. Clapuyt, F., Vanacker, V., & Van Oost, K. (2016). Reproducibility of UAV-based earth topography reconstructions based on structure-from-motion algorithms. Geomorphology, 260, 4–15. https://doi.org/10.1016/j.geomorph.2015.05.011

    Article  Google Scholar 

  66. Westoby, M. J., Brasington, J., Glasser, N. F., et al. (2012). ‘Structure-from-motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

    Article  Google Scholar 

  67. Agisoft LLC (2016) Agisoft PhotoScan User Manual: Professional Edition, Version 1.2. In: User Manuals.

    Google Scholar 

  68. Blaschke, T., Lang, S., & Hay, G. J. (2008). Object-based image analysis: Spatial concepts for knowledge-driven remote sensing applications. LibTuDelftNet.

    Google Scholar 

  69. Su, T., & Zhang, S. (2017). Local and global evaluation for remote sensing image segmentation. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2017.06.003

  70. Liu, D., & Xia, F. (2010). Assessing object-based classification: Advantages and limitations. Remote Sensing Letters. https://doi.org/10.1080/01431161003743173

  71. Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  72. Caridade, C. M. R., Marçal, A. R. S., & Mendonça, T. (2008). The use of texture for image classification of black; white air photographs. International Journal of Remote Sensing, 29, 593–607. https://doi.org/10.1080/01431160701281015

    Article  Google Scholar 

  73. Halounová, L. (2005). Automatic classification of B&W aerial orthophotos. In M. Oluic (Ed.), New strategies for European remote sensing (p. 768).

    Google Scholar 

  74. Hossain, M. D., & Chen, D. (2019). Segmentation for object-based image analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 115–134. https://doi.org/10.1016/j.isprsjprs.2019.02.009

    Article  Google Scholar 

  75. Benz, U. C., Hofmann, P., Willhauck, G., et al. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2003.10.002

  76. Rahman, M. R., & Saha, S. K. (2008). Multi-resolution segmentation for object-based classification and accuracy assessment of land use/land cover classification using remotely sensed data. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-008-0020-4

  77. Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing. https://doi.org/10.1080/0143116031000139863

  78. Khorram, S. K., Biging, G. S., Chrisman, N. R., et al. (1999). Accuracy assessment of remote sensing-derived change detection.

    Google Scholar 

  79. Darwish A, Leukert K, Reinhardt W (2003) IMage segmentation for the purpose of object-based classification. In: IGARSS 2003. 2003 IEEE international geoscience and remote sensing symposium. Proceedings (IEEE cat. No.03CH37477). IEEE, pp. 2039–2041.

    Google Scholar 

  80. Ryschawy, J., Choisis, N., Choisis, J. P., et al. (2012). Mixed crop-livestock systems: An economic and environmental-friendly way of farming? Animal. https://doi.org/10.1017/S1751731112000675

  81. Stark, F., González-García, E., Navegantes, L., et al. (2018). Crop-livestock integration determines the agroecological performance of mixed farming systems in Latino-Caribbean farms. Agronomy for Sustainable Development, 38, 4. https://doi.org/10.1007/s13593-017-0479-x

    Article  Google Scholar 

  82. Garrett, R. D., Ryschawy, J., Bell, L. W., et al. (2020). Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecology and Society. https://doi.org/10.5751/ES-11412-250124

  83. Vasilakos, C., Chatzistamatis, S., Roussou, O., & Soulakellis, N. (2019). Comparison of terrestrial photogrammetry and terrestrial laser scanning for earthquake response management. In Lecture notes in geoinformation and cartography (pp. 33–57).

    Google Scholar 

  84. Dimopoulos, T., & Kizos, T. (2020). Mapping change in the agricultural landscape of Lemnos. Landscape and Urban Planning, 203, 103894. https://doi.org/10.1016/j.landurbplan.2020.103894

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a result of the project “Translation of OAP activities into acknowledged landscape approaches (M6) - (17071)” funded by the MAVA Foundation for Nature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thymios Dimopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dimopoulos, T., Vasilakos, C., Kizos, T. (2022). Integrating Spatial with Qualitative Data to Monitor Land Use Intensity: Evidence from Arable Land – Animal Husbandry Systems. In: Bochtis, D.D., Moshou, D.E., Vasileiadis, G., Balafoutis, A., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme II: Data. Springer Optimization and Its Applications, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-030-84148-5_7

Download citation

Publish with us

Policies and ethics