Skip to main content

Machine Learning Technology and Its Current Implementation in Agriculture

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme II: Data

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 183))

Abstract

Humans have always been intrigued by the notion that a machine could simulate their brain and mimic their actions. For that reason, through the last decades, artificial intelligence became the most prominent field of computer science, aiming to the development of intelligent machines, which are able complete tasks that require high level of cognition. Artificial Intelligence (AI) is a broad area comprised of advanced mathematical methods and computational techniques, such as machine learning and deep learning. Machine learning refers to the mathematical and algorithmic approaches that enable computers to automatically improve their efficiency in particular tasks, without being explicit programming. By analyzing large amount of data, and recognizing the patterns and structures within, machine learning is enables computers to iteratively learn and improve their efficiency without any human interaction. This chapter aims to an introduction towards understanding what machine learning is, by highlighting its differences with conventional programming and pointing out some of its fundamental features. Moreover, different types of machine learning algorithms are described, and examples are given in order to underline their importance in our everyday lives. Finally, a preliminary scholarly literature survey is presented, indicating studies that are referred in machine learning algorithms in the agricultural domain for the years 2018–2020. The study reveals that machine learning can undoubtedly expand our capabilities in many fields of expertise that affect our lives. Specifically in agriculture, machine learning solutions can improve quality of products and significantly increase operational productivity and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turing A. M. (2012). Computing machinery and intelligence. In: Machine intelligence: Perspectives on the computational model. pp 1–28.

    Google Scholar 

  2. Solomonoff, R. J. (1985). The time scale of artificial intelligence: Reflections on social effects. Human Systems Management, 5, 149–153. https://doi.org/10.3233/HSM-1985-5207

    Article  Google Scholar 

  3. Stern, E. (2017). Individual differences in the learning potential of human beings. NPJ Science of Learning, 2. https://doi.org/10.1038/s41539-016-0003-0

  4. Marinoudi, V., Sørensen, C. G., Pearson, S., & Bochtis, D. (2019). Robotics and labour in agriculture. A context consideration. Biosystems Engineering, 184, 111–121. https://doi.org/10.1016/J.BIOSYSTEMSENG.2019.06.013

    Article  Google Scholar 

  5. Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95, 245–258.

    Article  Google Scholar 

  6. Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature Neuroscience, 21, 1148–1160.

    Article  Google Scholar 

  7. Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60.

    Article  Google Scholar 

  8. Agrawal, A., Gans, J., & Goldfarb, A. (2019). The impact of artificial intelligence on innovation. In: The economics of artificial intelligence. University of Chicago Press. pp 115–148.

    Google Scholar 

  9. Skyttner, L. (2006). Artificial intelligence and life. In: General systems theory. World Scientific. pp 319–351.

    Google Scholar 

  10. Farkas, I. (2003). Artificial intelligence in agriculture. In: Computers and electronics in agriculture. pp 1–3.

    Google Scholar 

  11. Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011

    Article  Google Scholar 

  12. Kalogirou, S. A. (2006). Introduction to artificial intelligence technology. Artificial Intelligence in Energy & Renewable Energy Systems, 1–46.

    Google Scholar 

  13. Hu, L. B., Cun, H. B., Tao, Y. W., et al. (2017). Applications of artificial intelligence in intelligent manufacturing: A review. Frontiers of Information Technology & Electronic Engineering, 18, 86–96.

    Article  Google Scholar 

  14. Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2009). Ambient intelligence: Technologies, applications, and opportunities. Pervasive and Mobile Computing, 5, 277–298.

    Article  Google Scholar 

  15. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science (80-. ), 349, 255–260.

    Article  MathSciNet  Google Scholar 

  16. Campbell, J. A. (1986). On artificial intelligence. Artificial Intelligence Review, 1, 3–9. https://doi.org/10.1007/BF01988524

    Article  Google Scholar 

  17. Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3, 95–99.

    Article  Google Scholar 

  18. Tiwari, A. K. (2017). Introduction to machine learning. Ubiquitous Machine Learning and Its Applications, 1–14.

    Google Scholar 

  19. Roth, D. (2006). Learning based programming. Studies in Fuzziness and Soft Computing, 194, 73–95. https://doi.org/10.1007/10985687_3

    Article  Google Scholar 

  20. Goertzel, T. (2014). The path to more general artificial intelligence. Journal of Experimental and Theoretical Artificial Intelligence, 26, 343–354.

    Google Scholar 

  21. Goertzel, B., & Pennachin, C. (2007). Artificial general intelligence. Cognition, Technology, 8.

    Google Scholar 

  22. Cunningham, P., Cord, M., & Delany, S. J. (2008). Supervised learning (pp. 21–49). Cognitive Technologies.

    Google Scholar 

  23. Francis, L. (2014). Unsupervised learning. In Predictive modeling applications in actuarial science: Volume I: Predictive modeling techniques (pp. 280–312). Cambridge University Press.

    Google Scholar 

  24. Aggarwal, C. C. (2014). Educational and software resources for data classification. In Data classification: Algorithms and applications (pp. 657–665). Chapman and Hall/CRC.

    Google Scholar 

  25. Silver, D., Schrittwieser, J., Simonyan, K., et al. (2017). Mastering the game of go without human knowledge. Nature, 550, 354–359. https://doi.org/10.1038/nature24270

    Article  Google Scholar 

  26. Haarnoja, T., Ha, S., Zhou, A., et al (2019). Learning to walk via deep reinforcement learning.

    Google Scholar 

  27. Liao, Y., Yi, K., & Yang, Z. (2012). CS229 final report reinforcement learning to play Mario. StanfordEdu.

    Google Scholar 

  28. Jacobson, K., Murali, V., Newett, E., et al (2016) Music personalization at Spotify. Proceedings of the 10th ACM Conference on Recommender Systems. pp 373–373. Association for Computing Machinery, New York, NY, United States.

    Google Scholar 

  29. Zhou, Y., Wilkinson, D., Schreiber, R., & Pan, R. (2008). Large-scale parallel collaborative filtering for the Netflix prize. In R. Fleischer & J. Xu (Eds.), Algorithmic aspects in information and management (Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)) (pp. 337–348). Springer, Berlin, Heidelberg.

    Google Scholar 

  30. Linden, G., Smith, B., & York, J. (2003). Amazon.Com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7, 76–80. https://doi.org/10.1109/MIC.2003.1167344

    Article  Google Scholar 

  31. Chen, Y., Tsai, F. S., & Chan, K. L. (2008). Machine learning techniques for business blog search and mining. Expert Systems with Applications, 35, 581–590. https://doi.org/10.1016/j.eswa.2007.07.015

    Article  Google Scholar 

  32. Olive, David J. (2017). Multiple linear regression. Linear regression. Springer, Cham, 17–83.

    Google Scholar 

  33. Grégoire, G. (2015). Multiple linear regression (EAS publications series) (pp. 45–72). European Astronomical Society Publications Series 66.

    Google Scholar 

  34. Davis, L. J., & Offord, K. P. (2013). Logistic regression. In Emerging issues and methods in personality assessment (pp. 273–283). Routledge.

    Google Scholar 

  35. Gooch, J. W. (2011). Stepwise regression. In Encyclopedic dictionary of polymers (pp. 998–998). Springer.

    Chapter  Google Scholar 

  36. Moutinho, L., Hutcheson, G., Hutcheson, G., & Hutcheson, G. (2014). Ordinary least-squares regression. In The SAGE dictionary of quantitative management research (pp. 225–228). The SAGE Publications Ltd.

    Google Scholar 

  37. Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19, 1–67. https://doi.org/10.1214/aos/1176347963

    Article  MathSciNet  MATH  Google Scholar 

  38. Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829–836. https://doi.org/10.1080/01621459.1979.10481038

    Article  MathSciNet  MATH  Google Scholar 

  39. Efron, B., Hastie, T., Johnstone, I., et al. (2004). Least angle regression. The Annals of Statistics, 32, 407–499. https://doi.org/10.1214/009053604000000067

    Article  MathSciNet  MATH  Google Scholar 

  40. McDonald, G. C. (2009). Ridge regression. Wiley Interdisciplinary Reviews: Computational Statistics, 1, 93–100. https://doi.org/10.1002/wics.14

    Article  Google Scholar 

  41. De Mol, C., De Vito, E., & Rosasco, L. (2009). Elastic-net regularization in learning theory. Journal of Complexity, 25, 201–230. https://doi.org/10.1016/j.jco.2009.01.002

    Article  MathSciNet  MATH  Google Scholar 

  42. Kukreja, S. L., Löfberg, J., & Brenner, M. J. (2006). A least absolute shrinkage and selection operator (Lasso) for nonlinear system identification. IFAC Proceedings Volumes, 39, 814–819. https://doi.org/10.3182/20060329-3-au-2901.00128

    Article  Google Scholar 

  43. Hartono, P. (2009). Bayes theorem. Kyokai Joho Imeji Zasshi/The Journal of The Institute of Image Information and Television Engineers, 63, 52–54. https://doi.org/10.3169/itej.63.52

    Article  Google Scholar 

  44. Stern, H. S. (2015). Bayesian statistics. In International encyclopedia of the social & behavioral sciences: Second edition (pp. 373–377). Amsterdam: Elsevier.

    Google Scholar 

  45. Ye, N., & Ye, N. (2020). Naïve Bayes classifier. In Data mining (pp. 31–36).

    Google Scholar 

  46. Zhang, H. (2004). The optimality of Naive Bayes. In: Proceedings of the seventeenth international florida artificial intelligence research society conference, FLAIRS 2004.

    Google Scholar 

  47. Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131–163. https://doi.org/10.1002/9780470400531.eorms0099

    Article  MATH  Google Scholar 

  48. Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347. https://doi.org/10.1007/bf00994110

    Article  MATH  Google Scholar 

  49. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning. https://doi.org/10.1023/A:1022627411411

  50. Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician. https://doi.org/10.1080/00031305.1992.10475879

  51. Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78, 1464–1480. https://doi.org/10.1109/5.58325

    Article  Google Scholar 

  52. Seo, S., & Obermayer, K. (2003). Soft learning vector quantization. Neural Computation, 15, 1589–1604. https://doi.org/10.1162/089976603321891819

    Article  MATH  Google Scholar 

  53. Atkeson, C. G., Moorey, A. W., Schaalz, S., et al. (1997). Locally weighted learning. Artificial Intelligence, 11, 11–73. https://doi.org/10.1023/A:1006559212014

    Article  Google Scholar 

  54. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees. Routledge.

    Book  Google Scholar 

  55. Hothorn, T., Hornik, K., & Zeileis, A. (2015). Ctree: Conditional inference trees. Comprehensive R Archive Network, 8, 1–34.

    Google Scholar 

  56. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106. https://doi.org/10.1023/A:1022643204877

    Article  Google Scholar 

  57. Salzberg, S. L. (1994). C4.5: Programs for machine learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Machine Learning, 16, 235–240. https://doi.org/10.1007/bf00993309

    Article  Google Scholar 

  58. Breiman, L. (2001). Random forrest. Machine Learning. https://doi.org/10.1023/A:1010933404324

  59. Freund, Y., & Schapire R. E. (1996). Experiments with a new boosting algorithm. In Proceedings of the 37th international conference on machine learning. 10.1.1.51.6252 as retrieved from (https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.6252&rep=rep1&type=pdf).

  60. Breiman, L. (1997). Arcing the edge. Statistics (Berlin). 10.1.1.62.8173 as retrieved from (https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.8173&rep=rep1&type=pdf).

  61. Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140. https://doi.org/10.1007/BF00058655

    Article  MATH  Google Scholar 

  62. Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1

    Article  Google Scholar 

  63. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 28, 100. https://doi.org/10.2307/2346830

    Article  MATH  Google Scholar 

  64. Small, C. G. (1990). A survey of multidimensional medians. International Statistical Review, 58, 263. https://doi.org/10.2307/1403809

    Article  Google Scholar 

  65. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433–459.

    Article  Google Scholar 

  66. De Cheveigné, A. (2012). Quadratic component analysis. NeuroImage, 59, 3838–3844. https://doi.org/10.1016/j.neuroimage.2011.10.084

    Article  Google Scholar 

  67. Tipping, M. E., & Bishop, C. M. (1999). Mixtures of probabilistic principal component analyzers. Neural Computation, 11, 443–482. https://doi.org/10.1162/089976699300016728

    Article  Google Scholar 

  68. Hastie, T., Tibshirani, R., & Buja, A. (1994). Flexible discriminant analysis by optimal scoring. Journal of the American Statistical Association, 89, 1255–1270. https://doi.org/10.1080/01621459.1994.10476866

    Article  MathSciNet  MATH  Google Scholar 

  69. Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 1–17. https://doi.org/10.1016/0003-2670(86)80028-9

    Article  Google Scholar 

  70. Kramer, R. (1998). Principal component regression. In Chemometric techniques for quantitative analysis (pp. 99–110). CRC Press,

    Google Scholar 

  71. Bowen, W. M. (2009). Multidimensional scaling. In International encyclopedia of human geography (pp. 216–221).

    Chapter  Google Scholar 

  72. Friedman, J. H., & Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817. https://doi.org/10.2307/2287576

    Article  MathSciNet  Google Scholar 

  73. Agrawal, R., & Srikant, R. (2013). Fast algorithms for mining association rules in datamining. International Journal of Scientific & Technology Research, 1215, 13–24.

    Google Scholar 

  74. Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, 12, 372–390. https://doi.org/10.1109/69.846291

    Article  Google Scholar 

  75. Chen, Y. Y., Lin, Y. H., Kung, C. C., et al. (2019). Design and implementation of cloud analytics-assisted smart power meters considering advanced artificial intelligence as edge analytics in demand-side management for smart homes. Sensors (Switzerland), 19. https://doi.org/10.3390/s19092047

  76. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–408. https://doi.org/10.1037/h0042519

    Article  Google Scholar 

  77. Hastie, T., Tibshirani, R., & Friedman, J. (2009). Springer series in statistics. The Elements of Statistical Learning, 27, 83–85. https://doi.org/10.1007/b94608

    Article  Google Scholar 

  78. Zinkevich, M. A., Weimer, M., Smola, A., & Li, L. (2010). Parallelized stochastic gradient descent. In: Advances in neural information processing systems 23: 24th annual conference on neural information processing systems 2010, NIPS 2010.

    Google Scholar 

  79. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536. https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  80. Broomhead, D., & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Systems. https://doi.org/10.1126/science.1179047

  81. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities (associative memory/parallel processing/categorization/content-addressable memory/fail-soft devices). Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.79.8.2554

  82. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1798–1828. https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  83. Hinton, G. (2014). Where do features come from? Cognitive Science, 38, 1078–1101. https://doi.org/10.1111/cogs.12049

    Article  Google Scholar 

  84. Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature. pp. 436–444.

    Google Scholar 

  85. Caterini, A. L., & Chang, D. E. (2018). Recurrent neural networks (SpringerBriefs in computer science) (pp. 59–79). Springer, Cham.

    Google Scholar 

  86. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation. https://doi.org/10.1162/neco.1997.9.8.1735

  87. Cho, K., Van Merriënboer, B., Gulcehre, C., et al (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP 2014–2014 conference on empirical methods in natural language processing, proceedings of the conference. pp 1724–1734.

    Google Scholar 

  88. Günther, J., Pilarski, P. M., Helfrich, G., et al. (2014). First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning. Procedia Technology, 15, 474–483. https://doi.org/10.1016/j.protcy.2014.09.007

    Article  Google Scholar 

  89. Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition. pp. 7132–7141.

    Google Scholar 

  90. Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems, 30, 3212–3232.

    Article  Google Scholar 

  91. Li, Y., Qi, H., Dai, J., et al (2017). Fully convolutional instance-aware semantic segmentation. In: Proceedings - 30th IEEE conference on computer vision and pattern recognition, CVPR 2017. pp 4438–4446.

    Google Scholar 

  92. Kingma, D. P., Welling, M. (2014). Auto-encoding variational bayes. In: 2nd international conference on learning representations, ICLR 2014 - conference track proceedings.

    Google Scholar 

  93. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. (2014). Generative adversarial nets (Advances in neural information processing systems) (pp. 2672–2680). Red Hook, NY Curran.

    Google Scholar 

  94. Hinton, G. (2009). Deep belief networks. Scholarpedia, 4, 5947. https://doi.org/10.4249/scholarpedia.5947

    Article  Google Scholar 

  95. Salakhutdinov, R., & Hinton, G. (2009). Deep Boltzmann machines. Aistats, 1, 448–455. https://doi.org/10.1109/CVPRW.2009.5206577

    Article  MATH  Google Scholar 

  96. Aznar-Sánchez, J. A., Piquer-Rodríguez, M., Velasco-Muñoz, J. F., & Manzano-Agugliaro, F. (2019). Worldwide research trends on sustainable land use in agriculture. Land Use Policy. https://doi.org/10.1016/j.landusepol.2019.104069

  97. Lampridi, M., Kateris, D., Sørensen, C. G., & Bochtis, D. (2020). Energy footprint of mechanized agricultural operations. Energies, 13, 769. https://doi.org/10.3390/en13030769

    Article  Google Scholar 

  98. Gomiero, T., Paoletti, M. G., & Pimentel, D. (2008). Energy and environmental issues in organic and conventional agriculture. CRC Critical Reviews in Plant Sciences. pp 239–254.

    Google Scholar 

  99. Lampridi, M. G., Sørensen, C. G., & Bochtis, D. (2019). Agricultural sustainability: A review of concepts and methods. Sustainability, 11, 5120. https://doi.org/10.3390/su11185120

    Article  Google Scholar 

  100. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/J.COMPAG.2018.02.016

    Article  Google Scholar 

  101. Liakos, K., Moustakidis, S., Tsiotra, G., et al (2017). Machine learning based computational analysis method for cattle lameness prediction. In: CEUR Workshop Proceedings.

    Google Scholar 

  102. Bochtis, D. D., Sørensen, C. G. C., & Busato, P. (2014). Advances in agricultural machinery management: A review. Biosystems Engineering, 126, 69–81. https://doi.org/10.1016/j.biosystemseng.2014.07.012

    Article  Google Scholar 

  103. Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture. pp 61–69

    Google Scholar 

  104. Anagnostis, A., Benos, L., Tsaopoulos, D., et al. (2021). Human activity recognition through recurrent neural networks for human–robot interaction in agriculture. Applied Sciences, 11, 2188. https://doi.org/10.3390/app11052188

    Article  Google Scholar 

  105. Liakos, K., Busato, P., Moshou, D., et al. (2018). Machine learning in agriculture: A review. Sensors, 18, 2674. https://doi.org/10.3390/s18082674

    Article  Google Scholar 

  106. Anagnostis, A., Tagarakis, A. C., Asiminari, G., et al. (2021). A deep learning approach for anthracnose infected trees classification in walnut orchards. Computers and Electronics in Agriculture, 182, 105998. https://doi.org/10.1016/j.compag.2021.105998

    Article  Google Scholar 

  107. M.J., McKenzie, J.E., Bossuyt, P.M. et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10, 89. https://doi.org/10.1186/s13643-021-01626-4.

  108. Khaki, S., & Wang, L. (2019). Crop yield prediction using deep neural networks. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00621

  109. Nevavuori, P., Narra, N., & Lipping, T. (2019). Crop yield prediction with deep convolutional neural networks. Computers and Electronics in Agriculture, 163. https://doi.org/10.1016/j.compag.2019.104859

  110. Yang, Q., Shi, L., Han, J., et al. (2019). Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Research. https://doi.org/10.1016/j.fcr.2019.02.022

  111. Chen, Y., Lee, W. S., Gan, H., et al. (2019). Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages. Remote Sensing. https://doi.org/10.3390/rs11131584

  112. Cai, Y., Guan, K., Lobell, D., et al. (2019). Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology. https://doi.org/10.1016/j.agrformet.2019.03.010

  113. Han, J., Zhang, Z., Cao, J., et al. (2020). Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sensing. https://doi.org/10.3390/rs12020236

  114. Folberth, C., Baklanov, A., Balkovič, J., et al. (2019). Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agricultural and Forest Meteorology. https://doi.org/10.1016/j.agrformet.2018.09.021

  115. Anagnostis, A., Asiminari, G., Papageorgiou, E., & Bochtis, D. (2020). A convolutional neural networks based method for anthracnose infected walnut tree leaves identification. Applied Sciences, 10. https://doi.org/10.3390/app10020469

  116. Pantazi, X. E., Moshou, D., & Tamouridou, A. A. (2019). Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers. Computers and Electronics in Agriculture, 156, 96–104. https://doi.org/10.1016/j.compag.2018.11.005

    Article  Google Scholar 

  117. Kerkech, M., Hafiane, A., & Canals, R. (2018). Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2018.10.006

  118. Zhang, X., Qiao, Y., Meng, F., et al. (2018). Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2844405

  119. Sharif, M., Khan, M. A., Iqbal, Z., et al. (2018). Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2018.04.023

  120. Habib, M. T., Majumder, A., Jakaria, A. Z. M., et al. (2020). Machine vision based papaya disease recognition. Journal of King Saud University – Computer and Information. https://doi.org/10.1016/j.jksuci.2018.06.006

  121. Abdulridha, J., Batuman, O., & Ampatzidis, Y. (2019). UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sensing. https://doi.org/10.3390/rs11111373

  122. Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., & Traore, D. (2019). Deep neural networks with transfer learning in millet crop images. Computers in Industry. https://doi.org/10.1016/j.compind.2019.02.003

  123. Picon, A., Alvarez-Gila, A., Seitz, M., et al. (2018). Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2018.04.002

  124. Liu, B., & Bruch, R. (2020). Weed detection for selective spraying: A review. Current Robot Reports. https://doi.org/10.1007/s43154-020-00001-w

  125. Yu, J., Sharpe, S. M., Schumann, A. W., & Boyd, N. S. (2019). Deep learning for image-based weed detection in turfgrass. European Journal of Agronomy. https://doi.org/10.1016/j.eja.2019.01.004

  126. Bakhshipour, A., & Jafari, A. (2018). Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2017.12.032

  127. Dian Bah, M., Hafiane, A., & Canals, R. (2018). Deep learning with unsupervised data labeling for weed detection in line crops in UAV images. Remote Sensing. https://doi.org/10.3390/rs10111690

  128. Gao, J., Liao, W., Nuyttens, D., et al. (2018). Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2017.12.012

  129. de Castro, A. I., Torres-Sánchez, J., Peña, J. M., et al. (2018). An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sensing. https://doi.org/10.3390/rs10020285

  130. Lottes, P., Behley, J., Milioto, A., & Stachniss, C. (2018). Fully convolutional networks with sequential information for robust crop and weed detection in precision farming. IEEE Robotics and Automation Letters. https://doi.org/10.1109/LRA.2018.2846289

  131. Huang, H., Deng, J., Lan, Y., et al. (2018). A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS One. https://doi.org/10.1371/journal.pone.0196302

  132. Ke-ling, T. U., Lin-juan, L. I., Li-ming, Y., et al. (2018). Selection for high quality pepper seeds by machine vision and classifiers. Journal of Integrative Agriculture. https://doi.org/10.1016/S2095-3119(18)62031-3

  133. Tan, K., Wang, R., Li, M., & Gong, Z. (2019). Discriminating soybean seed varieties using hyperspectral imaging and machine learning. Journal of Computational Methods in Science and Engineering. https://doi.org/10.3233/JCM-193562

  134. Gonzalez Viejo, C., Fuentes, S., Torrico, D., et al. (2018). Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.8506

  135. Bochtis, D., Sørensen, C. A. G., & Kateris, D. (2018). Operations management in agriculture. Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Anagnostis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anagnostis, A., Asiminari, G., Benos, L., Bochtis, D.D. (2022). Machine Learning Technology and Its Current Implementation in Agriculture. In: Bochtis, D.D., Moshou, D.E., Vasileiadis, G., Balafoutis, A., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme II: Data. Springer Optimization and Its Applications, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-030-84148-5_3

Download citation

Publish with us

Policies and ethics