Skip to main content

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 183))

  • 414 Accesses

Abstract

An information revolution is currently occurring in agriculture resulting in the production of massive datasets at different spatial and temporal scales; therefore, efficient techniques for processing and summarizing data will be crucial for effective precision management. With the profusion and wide diversification of data sources provided by modern technology, such as remote and proximal sensing, sensor datasets could be used as auxiliary information to supplement a sparsely sampled target variable. Remote and proximal sensing data are often massive, taken on different spatial and temporal scales, and subject to measurement error biases. Moreover, differences between the instruments are always present; nevertheless, a data fusion approach could take advantage of their complementary features by combining the sensor datasets in a manner that is statistically robust. It would then be ideal to jointly use (fuse) partial information from the diverse today-available sources so efficiently to achieve a more comprehensive view and knowledge of the processes under study. The chapter investigates the data fusion process in agriculture and its connection to artificial intelligence, neural networks, and IoT in agriculture, and introduces the concepts of data fusion with applications in Remote and Proximal sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein, L. A. (1993). Sensor and data fusion concepts and applications. Vol. TT14. SPIE Optical Engineering Press.

    Google Scholar 

  2. Hall, D. L., & Llinas, J. (1997). An introduction to multisensor data fusion. Proceedings of the IEEE, 85, 6–23.

    Article  Google Scholar 

  3. Wald, L. (1999). Some terms of reference in data fusion. IEEE Transactions on Geoscience and Remote Sensing, 13(3), 1190–1193.

    Article  Google Scholar 

  4. Geoscience and Remote Sensing Society. (2004). (Online) Available: http://www.dfc-grss.org.

  5. International Society of Information Fusion. (2004). (Online) Available: http://www.inforfusion.org.

  6. Luo, R. C., Kay, M. G., Eds. (1995). Multisensor Integration and Fusion for Intelligent Machines and Systems, Reissue edition Computer Engineering and Computer Science. Ablex Publishing, New Jersey, USA.

    Google Scholar 

  7. Brokmann, G., March, B., Romhild, D., & Steinke, A. (2001). Integrated multisensors for industrial humidity measurement. In Proceedings of the IEEE international conference on multisensor fusion and integration for intelligent systems. IEEE, Baden-Baden, Germany, 201–203.

    Google Scholar 

  8. Luo, R. C., Yih, C.-C., & Su, K. L. (2002). Multisensor fusion and integration: Approaches, applications, and future research directions. IEEE Sensors Journal, 2(2), 107–119.

    Article  Google Scholar 

  9. Dasarathy, B. V. (1997). Sensor fusion potential exploitation-innovative architectures and illustrative applications. Proceedings of the IEEE, 85(1), 24–38.

    Article  Google Scholar 

  10. Dasarathy, B. V. (2001). What, where, why, when, and how? Information Fusion, 2(2), 75–76. Editorial.

    Article  Google Scholar 

  11. Kokar, M. M., Tomasik, J. A., Weyman, J. 1999. A formal approach to information fusion. In Proceedings of the 2nd international conference on information fusion (Fusion’99). Vol. 1. ISIF, Sunnyvale, 133–140.

    Google Scholar 

  12. Kalpakis, K., Dasgupta, K., & Namjoshi, P. (2003). Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks. Computer Networks, 42(6), 697–716.

    Article  MATH  Google Scholar 

  13. Van Renesse, R. (2003). The importance of aggregation. In A. Schiper, A. A. Shvartsman, H. Weatherspoon, & B. Y. Zhao (Eds.), Future directions in distributed computing: Research and position papers (Lecture notes in computer science) (Vol. 2584, pp. 87–92). Springer.

    Chapter  Google Scholar 

  14. Cohen, N. H., Purakayastha, A., Turek, J., Wong, L., & Yeh, D. (2001). Challenges in flexible aggregation of pervasive data. IBM research report RC 21942 (98646), IBM Research Division, Yorktown Heights, NY (January).

    Google Scholar 

  15. Boulis, A., Ganeriwal, S., & Srivastava, M. B. (2003). Aggregation in sensor networks: An energy-accuracy trade-off. Ad Hoc Networks, 1(2–3), 317–331. Special Issue on Sensor Network Protocols and Applications.

    Article  Google Scholar 

  16. Elmenreich, W. (2002). Sensor fusion in time-triggered systems. Ph.D. thesis, Institut f ¨ ur Technische Informatik, Vienna University of Technology, Vienna, Austria.

    Google Scholar 

  17. Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American.

    Google Scholar 

  18. Cao, G., Yoo, E., & Wang, S. (2014). A statistical framework of data fusion for spatial prediction.

    Google Scholar 

  19. Hall, D. L. (2004). Mathematical techniques in multisensor data fusion. Artech House.

    MATH  Google Scholar 

  20. Bogaert, P., & Fasbender, D. (2007). Bayesian data fusion in a spatial prediction context: A general formulation. Stochastic Environmental Research and Risk Assessment, 21, 695–709.

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen, H., Cressie, N., & Braverman, A. (2012). Spatial statistical data fusion for remote sensing applications. Journal of the American Statistical Association, 107(499), 1004–1018.

    Article  MathSciNet  MATH  Google Scholar 

  22. White, Jr., F. E. (1990). Joint directors of laboratories data fusion subpanel report. In: Proceedings of the joint service data fusion symposium, DFS–90, 496–484.

    Google Scholar 

  23. Worden, K., & Dulieu-Barton, J. M. (2004). An overview of intelligent fault detection in systems and structures. Structural Health Monitoring, 3, 85–98.

    Article  Google Scholar 

  24. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cyirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  25. Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Comm. ACM, 43(5), 51–58.

    Article  Google Scholar 

  26. Brooks, R. R., & Iyengar, S. (1998). Multi-sensor fusion: Fundamentals and applications with software. Prentice Hall PTR.

    Google Scholar 

  27. Pantazi, X.-E., Moshou, D., Alexandridis, T. K., Whetton, R. L., & Mouazen, A. M. (2016). Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture, 121, 57–65. https://doi.org/10.1016/j.compag.2015.11.018

    Article  Google Scholar 

  28. Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceedings of the 6th annual international conference on mobile computing and networking (MobiCom’00). ACM Press, Boston, MA, 56–67.

    Google Scholar 

  29. Krishnamachari, B., Estrin, D., Wicker, S. (2002). The impact of data aggregation in wireless sensor networks. In International workshop of distributed event based systems (DEBS). IEEE, Vienna, Austria, 575–578.

    Google Scholar 

  30. Savvides, A., Han, C., & Strivastava, M. B. (2003). The n-hop multilateration primitive for node localization. Mobile Networks and Applications, 8(4), 443–451.

    Article  Google Scholar 

  31. Nakamura, E. F., Nakamura, F. G., Figueiredo, C. M., & Loureiro, A. A. (2005). Using information fusion to assist data dissemination in wireless sensor networks. Telecommunication Systems, 30(1–3), 237–254.

    Article  Google Scholar 

  32. Woo, A., Tong, T., & Culler, D. (2003). Taming the underlying challenges of reliable multihop routing in sensor networks. In Proceedings of the 1st international conference on embedded network sensor systems (SenSys’03), 14–27.

    Google Scholar 

  33. Megerian, S., Koushanfar, F., Qu, G., Veltri, G., & Potkonjak, M. (2002). Exposure in wireless sensor networks: Theory and practical solutions. Wireless Networks, 8(5), 443–454.

    Article  MATH  Google Scholar 

  34. Meguerdichian, S.,Koushanfar, F., Potkonjak, M., & Srivastava, M. (2001). Coverage problems in wireless ad-hoc sensor networks. In Proceedings of IEEE infocom 2001. Vol. 3. IEEE, Anchorage, AK, 1380–1387.

    Google Scholar 

  35. Meguerdichian, S., Slijepcevic, S., Karayan, V., & Potkonjak, M. (2001). Localized algorithms in wireless ad-hoc networks: Location discovery and sensor exposure. In Proceedings of the 2001 ACM international symposium on mobile ad hoc networking & computing. ACM Press, Long Beach, CA, 106–116.

    Google Scholar 

  36. Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, D., Georganas, N. D. (2002). A coverage-preserving node scheduling scheme for large wireless sensor networks. In Proceedings of the 1st ACM international workshop on wireless sensor networks and applications (WSNA’02). ACM Press, Atlanta, GA, 32–41.

    Google Scholar 

  38. Dhillon, S. S.,Chakrabarty, K., & Iyengar, S. S. (2002). Sensor placement for grid coverage under imprecise detections. In Proceedings of the 5th international conference on information fusion (Fusion 2002).Vol. 2. IEEE, Annapolis, Maryland, 1581–1587.

    Google Scholar 

  39. Durrant-Whyte, H. F. (1988). Sensor models and multisensor integration. The International Journal of Robotics Research, 7(6), 97–113.

    Article  Google Scholar 

  40. Rao, N. S. V. (2001). On fusers that perform better than the best sensor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(8), 904–909.

    Article  Google Scholar 

  41. Tax, D. M., et al. (2000). Combining multiple classifiers. Pat. Rec., 33, 1475–1485.

    Article  Google Scholar 

  42. Brooks, R. R., Ramanathan, P., & Sayeed, A. M. (2003). Distributed target classification and tracking in sensor networks. Proceedings of the IEEE, 91, 1162–1171.

    Article  Google Scholar 

  43. Zhao, F., et al. (2003). Collaborative signal and information processing: An information– Directed approach. Proceedings of the IEEE, 91, 1199–1209.

    Article  Google Scholar 

  44. Sasiadek, J. Z. (2002). Sensor fusion. Annual Reviews in Control, 26, 203–228.

    Article  Google Scholar 

  45. Filippidis, A., Jain, L. C., & Martin, N. (2000). Fusion of intelligent agents for the detection of aircraft in SAR images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(4), 378–384.

    Article  Google Scholar 

  46. Luo, R. C., & Kay, M. G. (1992). Data fusion and sensor integration: State-of-the-art 1990s. In M. A. Abidi & R. C. Gonzalez (Eds.), Data fusion in robotics and machine intelligence (pp. 7–135). Academic Press, , Chapter 3.

    Google Scholar 

  47. Castelaz, P. F. (1988). Neural networks in defense applications. In Proceedings of the IEEE international conference on neural networks. Vol. II. IEEE, San Diego, CA, 473–480.

    Google Scholar 

  48. Baran, R. H. (1989). A collective computation approach to automatic target recognition. In Proceedings of the international joint conference on neural networks. Vol. I. IEEE, Washington, D.C., 39–44.

    Google Scholar 

  49. Kohonen, T. (1997). Self-organizing maps. Springer-Verlag.

    Book  MATH  Google Scholar 

  50. Cain, M. P., Stewart, S. A., & Morse, J. B. 1989. Object classification using multispectral sensor data fusion. In Proceedings of SPIE sensor fusion II. Vol. 1100. SPIE, Orlando, FL, 53–61.

    Google Scholar 

  51. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  52. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (pp. 216–261). MIT Press.

    MATH  Google Scholar 

  53. Gandomi, A. H., Alavi, A. H., Arjmandi, P., et al. (2010). Genetic programming and orthogonal least squares: A hybrid approach to modeling the compressive strength of CFRP-conned concrete cylinders. Journal of Mechanics of Materials and Structures, 5, 735–753.

    Article  Google Scholar 

  54. Li, H., Jiao, Y. C., Zhang, L., & Gu, Z. W. (2006). Genetic algorithm based on the orthogonal design for multidimensional knapsack problems. In L. Jiao (Ed.), Adv. Nat. Comput. Lecture notes in computer science. Advances in Natural Computation: Proceedings Second International Conferernce, ICNC 2006, Xi'an, China, September 24–28, (Vol. 4221, pp. 696–705). Springer.

    Google Scholar 

  55. Waltz, E., & Llinas, J. (1990). Multisensor data fusion. Artech House.

    Google Scholar 

  56. Pau, L. F. (1988). Sensor Data Fusion. Journal of Intelligent & Robotic Systems, 1, 103–116.

    Article  Google Scholar 

  57. Bass, T. (2000). Intrusion detection systems and multisensor data fusion. Communications of the ACM, 43(4), 99–105. ACM Press.

    Article  Google Scholar 

  58. Lewis, T. W. Powers, D. M. W. 2002. Audio-visual speech recognition using red exclusion and neural networks. In Proceedings of the 25th Australasian conference on computer science. Australian Computer Society, Inc., Melbourne, Victoria, Australia, 149–156.

    Google Scholar 

  59. Cimander, C., Carlsson, M., & Mandenius, C. (2002). Sensor fusion for on-line monitoring of yoghurt fermentation. Journal of Biotechnology, 99(3), 237–248.

    Article  Google Scholar 

  60. Yiyao, L., Venkatesh, Y. V., & Ko, C. C. (2001). A knowledge-based neural network for fusing edge maps of multi-sensor images. Inform. Fusion 2, 2(June), 121–133.

    Article  Google Scholar 

  61. Zhang, F., Du, B., & Zhang, L. (2015). Saliency-guided unsupervised feature learning for scene classification. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 2175–2184.

    Article  Google Scholar 

  62. Chen, Y., Zhao, X., & Jia, X. (2015). Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2381–2392.

    Article  Google Scholar 

  63. Chen, X., Xiang, S., Liu, C. L., & Pan, C. H. (2014). Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 11(10), 1797–1801.

    Article  Google Scholar 

  64. Zhang, F., Du, B., Zhang, L., & Zhang, L. (2016). Hierarchical feature learning with dropout k-means for hyperspectral image classification. Neurocomputing, 187, 75–82.

    Article  Google Scholar 

  65. Cai, K., Shao, W., Yin, X., & Liu, G.. (2012). Co-segmentation of aircrafts from high-resolution satellite images. In Proc. IEEE international conference on signal processing, Beijing, pp. 993–996.

    Google Scholar 

  66. Ramos, P. J., Prieto, F. A., Montoya, E. C., & Oliveros, C. E. (2017). Automatic fruit count on coffee branches using computer vision. Computers and Electronics in Agriculture, 137, 9–22. https://doi.org/10.1016/j.compag.2017.03.010

    Article  Google Scholar 

  67. Amatya, S., Karkee, M., Gongal, A., Zhang, Q., & Whiting, M. D. (2015). Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting. Biosystems Engineering, 146, 3–15. https://doi.org/10.1016/j.biosystemseng.2015.10.003

    Article  Google Scholar 

  68. Sengupta, S., & Lee, W. S. (2014). Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions. Biosystems Engineering, 117, 51–61. https://doi.org/10.1016/j.biosystemseng.2013.07.007

    Article  Google Scholar 

  69. Ali, I., Cawkwell, F., Dwyer, E., & Green, S. (2016). Modeling managed grassland biomass estimation by using multitemporal remote sensing data—A machine learning approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 3254–3264.

    Article  Google Scholar 

  70. Senthilnath, J., Dokania, A., Kandukuri, M., Ramesh, K. N., Anand, G., & Omkar, S. N. (2016). Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosystems Engineering, 146, 16–32. https://doi.org/10.1016/j.biosystemseng.2015.12.003

    Article  Google Scholar 

  71. Su, Y., Xu, H., & Yan, L. (2017). Support vector machine-based open crop model (SBOCM): Case of rice production in China. Saudi Journal of Biological Sciences, 24, 537–547. https://doi.org/10.1016/j.sjbs.2017.01.024

    Article  Google Scholar 

  72. Anagnostis, A., Tagarakis, A. C., Asiminari, G., Papageorgiou, E., Kateris, D., Moshou, D., & Bochtis, D. (2021). A deep learning approach for anthracnose infected trees classification in walnut orchards. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2021.105998

  73. Pantazi, X. E., Tamouridou, A. A., Alexandridis, T. K., Lagopodi, A. L., Kontouris, G., & Moshou, D. (2017b). Detection of Silybum marianum infection with Microbotryum silybum using VNIR field spectroscopy. Computers and Electronics in Agriculture, 137, 130–137. https://doi.org/10.1016/j.compag.2017.03.017

    Article  Google Scholar 

  74. Ebrahimi, M. A., Khoshtaghaza, M. H., Minaei, S., & Jamshidi, B. (2017). Vision-based pest detection based on SVM classification method. Computers and Electronics in Agriculture, 137, 52–58. https://doi.org/10.1016/j.compag.2017.03.016

    Article  Google Scholar 

  75. Chung, C. L., Huang, K. J., Chen, S. Y., Lai, M. H., Chen, Y. C., & Kuo, Y. F. (2016). Detecting Bakanae disease in rice seedlings by machine vision. Computers and Electronics in Agriculture, 121, 404–411. https://doi.org/10.1016/j.compag.2016.01.008

    Article  Google Scholar 

  76. Pantazi, X. E., Moshou, D., Oberti, R., West, J., Mouazen, A. M., & Bochtis, D. (2017). Detection of biotic and abiotic stresses in crops by using hierarchical self-organizing classifiers. Precision Agriculture, 18, 383–393. https://doi.org/10.1007/s11119-017-9507-8

    Article  Google Scholar 

  77. Moshou, D., Pantazi, X.-E., Kateris, D., & Gravalos, I. (2014). Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier. Biosystems Engineering, 117, 15–22. https://doi.org/10.1016/j.biosystemseng.2013.07.008

    Article  Google Scholar 

  78. Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.

    Article  Google Scholar 

  79. Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., & Ramon, H. (2004). Automatic detection of “yellow rust” in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture, 44, 173–188. https://doi.org/10.1016/j.compag.2004.04.003

    Article  Google Scholar 

  80. Moshou, D., Bravo, C., Wahlen, S., West, J., McCartney, A., De Baerdemaeker, J., & Ramon, H. (2006). Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps. Precision Agriculture, 7, 149–164. https://doi.org/10.1007/s11119-006-9002-0

    Article  Google Scholar 

  81. Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., & Ramon, H. (2005). Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging, 11, 75–83. https://doi.org/10.1016/j.rti.2005.03.003

    Article  Google Scholar 

  82. Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318. https://doi.org/10.1016/J.COMPAG.2018.01.009

    Article  Google Scholar 

  83. Pantazi, X. E., Tamouridou, A. A., Alexandridis, T. K., Lagopodi, A. L., Kashefi, J., & Moshou, D. (2017a). Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery. Computers and Electronics in Agriculture, 139, 224–230. https://doi.org/10.1016/j.compag.2017.05.026

    Article  Google Scholar 

  84. Pantazi, X.-E., Moshou, D., & Bravo, C. (2016). Active learning system for weed species recognition based on hyperspectral sensing. Biosystems Engineering, 146, 1–10. https://doi.org/10.1016/j.biosystemseng.2016.01.014

    Article  Google Scholar 

  85. Grinblat, G. L., Uzal, L. C., Larese, M. G., & Granitto, P. M. (2016). Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture, 127, 418–424. https://doi.org/10.1016/j.compag.2016.07.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios E. Moshou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moshou, D.E., Pantazi, X.E. (2022). Data Fusion and Its Applications in Agriculture. In: Bochtis, D.D., Moshou, D.E., Vasileiadis, G., Balafoutis, A., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme II: Data. Springer Optimization and Its Applications, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-030-84148-5_2

Download citation

Publish with us

Policies and ethics