Skip to main content

You Got Data‥‥ Now What: Building the Right Solution for the Problem

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme II: Data

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 183))

  • 371 Accesses

Abstract

The demands placed upon the agri-food industry are becoming ever greater and ever more urgent, and food producers are turning to technology to provide solutions to maximizing production and productivity. In the last decade, there has been a rapid expansion in Information and Communications Technology that is now capable of answering these challenges and breaking free of dependence upon manual labor and levels of human skill and experience that would take years or even decades to develop. This expansion has taken place at two essential levels. At a first level, it is possible to design and engineer individual sensors that can supply accurate measurements wherever they are placed and whenever they are in place. However, it is only when an array of sensors is deployed in a spatial network over an extended period, does the power of technology become apparent as through these networks remote and automatic control of production processes becomes realized. At a second level, it is now possible to design and engineer computing hardware and software to process the enormous datasets that these sensor networks generate. Furthermore, advancements in machine learning have facilitated the creation of predictive models to divine accurate process control decisions from these datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations. (2020a). Global issues: Our growing population. United Nations Neutral Zone.

    Google Scholar 

  2. United Nations. (2020b). Looking ahead in world food and agriculture. United Nations Neutral Zone.

    Google Scholar 

  3. Gerland, P., Raftery, A. E., Ševcíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B. K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G. K., & Wilmoth, J. (2014). World population stabilization unlikely this century. Science (New York, N.Y.), 346(6206), 234–237.

    Article  Google Scholar 

  4. Kummu, M., Guillaume, J. H. A., de Moel, H., Eisner, S., Flörke, M., Porkka, M., Siebert, S., Veldkamp, T. I., & Ward, P. J. (2016). The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Scientific reports, 6, 38495.

    Article  Google Scholar 

  5. Agriland. (2020). Labour availability is now a critical issue within agri-food. Agriland Media.

    Google Scholar 

  6. Food Manufacture. (2020). Labour shortage reaching crisis point for agricultural sector. William Reed Business Media.

    Google Scholar 

  7. Food Processing Technology. (2020). UK food industry suffers from labour shortage. Global Data.

    Google Scholar 

  8. Henriksen, A. V., Edwards, G. T. C., Pesonen, L. A., Green, O., & Sorensen, C. A. G. (2020). Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosystems Engineering, 191(1), 60–84.

    Article  Google Scholar 

  9. Jamieson, J. A. (1976). Passive Infrared Sensors: Limitations on Performance. Journal of Applied Optics, 15(4), 891–909.

    Article  Google Scholar 

  10. Maxbotix. (2019). Ultrasonic sensors: Advantages and limitations. Maxbotix Inc..

    Google Scholar 

  11. National Safety Council. (2020). The pros and cons of electrochemical sensors. National Safety Council Congress & Expo.

    Google Scholar 

  12. Donald, N. (1988). The design of everyday things. Basic Books.

    Google Scholar 

  13. Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowich, K., Kelsey, W. D., Le Phouc, D., LeFort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., … Taylor, K. (2012). The SSN ontology of the W3C semantic sensor network incubator group. Journal of Web Semantics, 17(1), 25–32.

    Article  Google Scholar 

  14. Liu, H., & Tang, Z. (2013). Metal oxide gas sensor drift compensation using a dynamic classifier ensemble based on fitting. Sensors, 13(7), 9160–9173.

    Article  Google Scholar 

  15. Irish, J. (2005). Ocean instrumentation – Instrumentation specifications. Massachusetts Institute of Technology.

    Google Scholar 

  16. Loock, H. P., & Wentzell, P. D. (2012). Detection limits of chemical sensors: Applications and misapplications. Sensors and Actuators B: Chemical, 173(2), 157–163.

    Article  Google Scholar 

  17. Dang, Q. K., & Suh, Y. S. (2014). Sensor saturation compensated smoothing algorithm for inertial sensor based motion tracking. Sensors, 14(5), 8167–8188.

    Article  Google Scholar 

  18. Palmisano, V., Weidner, E., Boon-Brett, L., Bonato, C., Harskamp, F., Moretto, P., Post, M. B., Burgess, R., Rivkin, C., & Buttner, W. J. (2015). Selectivity and resistance to poisons of commercial hydrogen sensors. International Journal of Hydrogen Energy, 40(35), 11740–11747.

    Article  Google Scholar 

  19. Sparkfun Electronics. (2020). FLIR Radiometric Lepton Dev Kit V2. Sparkfun Electronics.

    Google Scholar 

  20. Ward, W. K., Engle, J. M., Branigan, D., El Youssef, J., Massoud, R. G., & Castle, J. R. (2012). The effect of rising vs. falling glucose level on amperometric glucose sensor lag and accuracy in type 1 diabetes. Journal of Diabetic Medicine, 29(8), 1067–1073.

    Article  Google Scholar 

  21. World Nuclear Association. (2019). RBMK reactors – Appendix to nuclear power reactors. World Nuclear Association.

    Google Scholar 

  22. Corrigan, T. E., & Beavers, W. O. (1968). Dead space interaction in continuous stirred tank reactors. Chemical Engineering Science, 23(9), 1003–1006.

    Article  Google Scholar 

  23. Hilbert, M., & Lopez, P. (2011). The World’s technological capacity to store, communicate, and compute information. Science, 332(2), 60–65.

    Article  Google Scholar 

  24. Fidanova, S., Shindarov, M., & Marinov, P. (2017). Wireless sensor positioning using ACO algorithm. In Recent contributions in intelligent systems (pp. 33–44). Springer.

    Chapter  Google Scholar 

  25. Abbas, N., Yu, F., & Fan, Y. (2018). Intelligent video surveillance platform for wireless multimedia sensor networks. Journal of Applied Sciences, 348(8), 1–14.

    Google Scholar 

  26. Cisco Systems. (2020). What is a Wi-Fi or wireless network vs. a wired network? Cisco Systems.

    Google Scholar 

  27. MacDonald, J. M., Korb, P., & Hoppe, R. A. (2016). Farm size and the organization of U.S (Crop Farming). United States Department of Agriculture Economic Research Service.

    Google Scholar 

  28. Zigbee Alliance. (2020). What is Zigbee? Zigbee Alliance.

    Google Scholar 

  29. Jackman, P., Gray, A. J. G., Brass, A., Stevens, R., Shi, M., Scuffell, D., Hammersley, S., & Grieve, B. (2012). Processing online crop disease warning information via sensor networks using ISA ontologies. CIGR Journal, 15(3), 243–251.

    Google Scholar 

  30. West, J., & Kimber, R. B. E. (2015). Innovations in air sampling to detect plant pathogens. Annals of Applied Biology, 166(1), 4–17.

    Article  Google Scholar 

  31. He, Y., Peng, J., Liu, F., Zhang, C., & Kong, W. (2015). Critical review of fast detection of crop nutrient and physiological information with spectral and imaging technology. Transactions of the Chinese Society of Agricultural Engineering, 31(3), 174–189.

    Google Scholar 

  32. Henrich, V., Krauss, G., Gotze, C., & Sandow, C. (2020). Index database: A database for remote sensing indices. University of Bonn.

    Google Scholar 

  33. Ahamed, T., Tian, L., Jiang, Y., Zhao, B., Liu, H., & Ting, K. C. (2012). Tower remote-sensing system for monitoring energy crops; image acquisition and geometric corrections. Biosystems Engineering, 112(2), 93–107.

    Article  Google Scholar 

  34. CLAAS. (2020). Forage harvesters – Jaguar. CLAAS Harsewinkel.

    Google Scholar 

  35. John Deere. (2020). HarvestLab 3000. John Deere.

    Google Scholar 

  36. YARA. (2020). N-Sensor ALS – to variably apply nitrogen. YARA.

    Google Scholar 

  37. Oerke, E. C., Mahlein, A. K., & Steiner, U. (2014). Proximal sensing of plant diseases. In Detection and diagnostics of plant pathogens. Springer.

    Google Scholar 

  38. European Parliament. (2020). Chemicals and pesticides, factsheets on the European Union. .

    Google Scholar 

  39. European Space Imaging. (2020). Our satellites: Earths most advanced constellation. European Space Imaging.

    Google Scholar 

  40. Partel, V., Kakarla, S. C., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and Electronics in Agriculture., 157(3), 339–350.

    Article  Google Scholar 

  41. Benke, K., & Tompkins, B. (2017). Future food-production systems: vertical farming and controlled-environment agriculture. Journal of Sustainability: Science, Practice & Policy., 13(1), 13–26.

    Google Scholar 

  42. Jha, M. K., Pakira, S. S., & Sahu, M. R. (2019). Protected cultivation of horticulture crops. Educreation Publishing.

    Google Scholar 

  43. Rouse, J. W., Haas, R. H., Scheel, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS. In: Proceedings, 3rd earth resource technology satellite (ERTS) symposium, vol. 1, p. 48–62.

    Google Scholar 

  44. Ryu, K. H., Kim, G. Y., & Chae, H. Y. (2000). Monitoring greenhouse plants using thermal imaging. IFAC Proceedings Volumes, 33(29), 181–186.

    Article  Google Scholar 

  45. Li, L., Zhang, Q., & Huang, D. (2014). A Review of Imaging Techniques for Plant Phenotyping. Journal of Sensors, 14(11), 20078–20111.

    Article  Google Scholar 

  46. Corkery, G., Ward, S., Kenny, C., & Hemmingway, P. (2013). Incorporating smart sensing technologies into the poultry industry. World Poultry Research, 3(4), 106–128.

    Google Scholar 

  47. Jackman, P., Penya, H., & Ross, R. (2020). The role of information and communication technology in poultry broiler production process control: A review. Agricultural Engineering International (CIGR Journal), 22(3), 284–299

    Google Scholar 

  48. Ward, S. (2012). BOSCA – A smart networked sensing system in agriculture: A poultry industry focus. Science Foundation Ireland.

    Google Scholar 

  49. Jackman, P., Ward, S., Brennan, L., Corkery, G., & McCarthy, U. (2015). Application of wireless technologies to forward predict crop yields in the poultry production chain. CIGR Journal, 17(2), 287–295.

    Google Scholar 

  50. Astill, J., Dara, R. A., Fraser, E. D. G., & Sharif, S. (2018). Detecting and predicting emerging disease in poultry with the implementation of new technologies and big data: A focus on avian influenza virus. Frontiers in Veterinary Science, 5(1), 1–12.

    Google Scholar 

  51. Agrologic. (2017). Poultry products. Agrologic Online Service.

    Google Scholar 

  52. Fancom. (2017). Broiler climate controllers. Fancom Online Service.

    Google Scholar 

  53. Rotem. (2014). Platinum plus controller manual, rotem control and management online service. Petach-Tikva.

    Google Scholar 

  54. Ross, R. J. (2015). Precise poultry: Analytics supported decision systems in poultry farming. Enterprise Ireland.

    Google Scholar 

  55. Neves, D. P., Mehdizadeh, S. A., Tscharke, M., deAlancar-Naas, I., & Banhazi, T. M. (2015). Detection of flock movement and behaviour of broiler chickens at different feeders using image analysis. Information Processing in Agriculture, 2(2), 177–182.

    Article  Google Scholar 

  56. Ross, J. W., Hale, B. J., Gabler, N., & Rhoads, R. P. (2015). Physiological consequences of heat stress in pigs. Animal Production Science, 55(11), 1381–1390.

    Article  Google Scholar 

  57. Ter-Sarkisov, A., Ross, R., & Kelleher, J. (2017). Bootstrapping labelled dataset construction for cow tracking and behavior analysis. In: 14th Conference on computer and robot vision. Edmonton, AL, Canada. May 17–19, 2017.

    Google Scholar 

  58. Yukun, S., Pengju, H., Yujie, W., Ziqi, C., Yang, L., Baisheng, D., Runze, L., & Yonggen, Z. (2019). Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score. Journal of Dairy Science, 102(11), 10140–10151.

    Article  Google Scholar 

  59. Bennett, S. (1993). Development of the PID controller. IEEE Control Systems Magazine, 13(6), 58–62.

    Article  Google Scholar 

  60. Liu, C., Peng, J.-F., Zhao, F.-Y., & Li, C. (2009). Design and optimization of fuzzy-PID controller for the nuclear reactor power control. Nuclear Engineering and Design, 239(11), 2311–2316.

    Article  Google Scholar 

  61. Lu, X., Duan, X., Mao, X., Li, Y., & Zhang, X. (2017). Feature extraction and fusion using deep convolutional neural networks for face detection. Mathematical Problems in Engineering, 1(1), 1–9.

    Article  Google Scholar 

  62. Pereira, D. T., Aldarondo, D. E., Willmore, L., Kislin, M., Wang, S. S.-H., Murthy, M., & Shaevitz, J. W. (2019). Fast animal pose estimation using deep neural networks. Nature Methods, 16(1), 117–125.

    Article  Google Scholar 

  63. Shakoor, N., Lee, S., & Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 38(1), 184–192.

    Article  Google Scholar 

  64. Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Springer Press.

    Book  MATH  Google Scholar 

  65. Trabesinger, A. (2017). Quantum computing: towards reality. Nature Outline, 543(1).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Jackman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jackman, P. (2022). You Got Data‥‥ Now What: Building the Right Solution for the Problem. In: Bochtis, D.D., Moshou, D.E., Vasileiadis, G., Balafoutis, A., Pardalos, P.M. (eds) Information and Communication Technologies for Agriculture—Theme II: Data. Springer Optimization and Its Applications, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-030-84148-5_1

Download citation

Publish with us

Policies and ethics