Skip to main content

Interpolation of the Zech’s Logarithm: Explicit Forms

  • Chapter
  • First Online:
Approximation and Computation in Science and Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 180))

  • 824 Accesses

Abstract

Zech’s logarithm is a function closely related to the Discrete Logarithm. It has applications in communications, cryptography, and computing. In this paper, we provide polynomial and exponential formulas for Zech’s logarithm over prime fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Chang et al., Binary de Bruijn sequences via Zech’s logarithms (2019). arXiv:1705.03150

    Google Scholar 

  2. J.H. Conway, A tabulation of some information concerning finite fields, in Computers in Mathematical Research, ed. by R.F. Churchouse, J.C. Herz (North-Holland, Amsterdam, 1968), pp. 37–50

    Google Scholar 

  3. W. Diffie, M. Hellman, New directions in cryptography. IEEE Trans. Inform. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory 31, 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Hachenberger, D. Jungnickel, Topics in Galois Fields. Algorithms and Computation in Mathematics (Springer, Berlin, 2020)

    Google Scholar 

  6. K. Huber, Some Comments on Zech’s Logarithms. IEEE Trans. Inform. Theory 36(4), 946–950 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Huber, Solving equations in finite fields and some results concerning the structure of GF(pm). IEEE Trans. Inform. Theory 38, 1154–1162 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Huber et al., Method and device for generating a pseudo random sequence using a discrete logarithm. Patent, EP1342153 (2003), WO/2002/046912 (2002), US20040054703 (2004)

    Google Scholar 

  9. K. Imamura, A method for computing addition tables in GF (pn). IEEE Trans. Inform. Theory IT-26, 367–369 (1980)

    Article  MATH  Google Scholar 

  10. A. Joux, A. Odlyzko, C. Pierrot, The Past, evolving Present and Future of Discrete Logarithm. Open Problems in Mathematics and Computational Science (2014), pp. 5–36

    Google Scholar 

  11. D. Knuth, The Art of Computer Programming, vol III (1969)

    Google Scholar 

  12. C.D. Lee, Zech logarithmic decoding of triple-error-correcting binary cyclic codes. IEEE Commun. Lett. 12(10), 776– 778 (2008)

    Article  Google Scholar 

  13. F.J. MacWiIIiams, N.J.A. Sloane, The Theory of Error-Correcting Codes (North Holland, Amsterdam, 1977)

    Google Scholar 

  14. G.C. Meletiou, A polynomial representation for exponents in Zp. Bull. Greek Math. Soc. 34, 59–63 (1992)

    MathSciNet  MATH  Google Scholar 

  15. J.F. Nash, Jr., M.Th. Rassias (eds.), Open Problems in Mathematics (Springer, Berlin, 2016)

    MATH  Google Scholar 

  16. A. Odlyzko, Discrete logarithms: the past and the future. Designs Codes Cryptogr. 19, 129–145 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. A.M. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance, in Proc. EUROCRYPT 84. Lecture Notes in Computer Science, vol. 209 (Springer, Berlin, Heidelberg, New York, 1985), pp. 224–314

    Google Scholar 

  18. S.C. Pohlig, M.E. Hellman, An improved algorithm for computing logarithms over GF (p) and its cryptographic significance. Inform. Theory 24, 106–110 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Szmidt, Nonlinear feedback shift registers and Zech’s logarithms, in Proceedings of International Conference on Military Communications and Information Systems (ICMCIS) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Th. Rassias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meletiou, G.C., Rassias, M.T. (2022). Interpolation of the Zech’s Logarithm: Explicit Forms. In: Daras, N.J., Rassias, T.M. (eds) Approximation and Computation in Science and Engineering. Springer Optimization and Its Applications, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-030-84122-5_33

Download citation

Publish with us

Policies and ethics