Skip to main content

Buried Volcano-Hydrothermal Systems and Minerals on Mars

  • Chapter
  • First Online:
Mars: A Volcanic World

Abstract

The pressure and temperature conditions on planet Mars have probably never permitted the presence of liquid water at its surface, as witnessed by unaltered olivines of any age since the Naochian. Nevertheless, iron sulphates at the surface suggest hydrothermal activity at some point in time and space, arguably at depth, from where minerals were expulsed by volcanic activity and/or “sweating out” during phases of heating upon meteorite impacts. Beneath the cryosphere, at depths between 4 and 10 km, the reigning P–T conditions meet the stability conditions of water and vapour, originating from a degassing magma. The sulphate dominance in Mars’ mineralogy mimics the terrestrial analogues of hyperacid and hypersaline fluids and minerals hosted in Earth’s most extreme crater lakes (e.g. Kawah Ijen, Poás, Copahue, Ruapehu, White Island) and ore depositing systems (e.g. high-sulphidation and porphyry systems). The observed similarity enables a bidirectional learning process for future research: on one hand, the more extreme systems on Mars can teach us on how highly active magmatic-hydrothermal and ore depositing systems on Earth might work; on the other hand, metal transport and deposition at terrestrial systems opens perspectives for “space mining” on Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klingelhöfer G, Morris RV, Bernhardt B, Schröder C, Rodionov DS, de Souza PA et al (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science (80–)306(5702)

    Google Scholar 

  2. Ehlmann BL, Edwards CS (2014) Mineralogy of the Martian surface. Annu Rev Earth Planet Sci 42(1):291–315

    Article  Google Scholar 

  3. Ming DW, Mittlefehldt DW, Morris RV, Golden DC, Gellert R, Yen A et al (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. J Geophys Res Planets 111(E2)

    Google Scholar 

  4. Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B, Poulet F et al (2005) Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science (80–) [Internet] 307(5715):1587–1591 [cited 2020 Nov 28]. http://science.sciencemag.org/

  5. Ehlmann BL, Swayze GA, Milliken RE, Mustard JF, Clark RN, Murchie SL et al (2016) Discovery of alunite in Cross crater, Terra Sirenum, Mars: evidence for acidic, sulfurous waters. Am Mineral 101(7):1527–1542

    Google Scholar 

  6. McSween HY, Wyatt MB, Gellert R, Bell JF, Morris RV, Herkenhoff KE et al (2006) Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. J Geophys Res Planets 111(E2):E02S10

    Google Scholar 

  7. Madden MEE, Bodnar RJ, Rimstidt JD (2004) Jarosite as an indicator of water-limited chemical weathering on Mars. Nature 431:821–823

    Article  Google Scholar 

  8. Ehlmann BL, Mustard JF, Murchie SL (2010) Geologic setting of serpentine deposits on Mars. Geophys Res Lett 37:L06201

    Article  Google Scholar 

  9. Leone G (2020) The absence of an ocean and the fate of water all over the martian history. Earth Space Sci 7(4):e2019EA001031

    Google Scholar 

  10. Leone G (2016) Alignments of volcanic features in the southern hemisphere of Mars produced by migrating mantle plumes. J Volcanol Geotherm Res 309:78–95

    Article  Google Scholar 

  11. Michalski JR, Cuadros J, Bishop JL, Darby Dyar M, Dekov V, Fiore S (2015) Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars and links to global alteration trends. Earth Planet Sci Lett [Internet] 427:215–225 [cited 2019 Apr 8]. https://www.sciencedirect.com/science/article/pii/S0012821X15003775

  12. Ehlmann BL, Mustard JF, Murchie SL, Bibring J-P, Meunier A, Fraeman AA et al (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature [Internet] 479(7371):53–60 [cited 2019 Oct 2]. http://www.nature.com/articles/nature10582

  13. Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev [Internet] 46(6):479–506 [cited 2019 Apr 6]. https://www.tandfonline.com/doi/full/https://doi.org/10.2747/0020-6814.46.6.479

  14. Evans BW (2010) Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life(?). Geology [Internet] 38(10):879–882 [cited 2019 Apr 6]. http://pubs.geoscienceworld.org/geology/article/38/10/879/130064/Lizardite-versus-antigorite-serpentinite-Magnetite

  15. Michalski JR, Onstott TC, Mojzsis SJ, Mustard J, Chan QHS, Niles PB et al (2018) The Martian subsurface as a potential window into the origin of life. Nat Geosci 11(1):21–26

    Google Scholar 

  16. Leone G (2017) Mangala Valles, Mars: a reassessment of formation processes based on a new geomorphological and stratigraphic analysis of the geological units. J Volcanol Geotherm Res 337:62–80

    Article  Google Scholar 

  17. Bell JF, McSween HY, Crisp JA, Morris RV, Murchie SL, Bridges NT et al (2000) Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder. J Geophys Res Planets [Internet] 105(E1):1721–1755 [cited 2018 Nov 10]. https://doi.org/10.1029/1999JE001060

  18. McSween HY, Ruff SW, Morris RV, Bell JF, Herkenhoff K, Gellert R et al (2006) Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. J Geophys Res [Internet] 111(E9):E09S91 [cited 2018 Oct 18]. https://doi.org/10.1029/2006JE002698

  19. Ming DW, Gellert R, Morris RV, Arvidson RE, Brückner J, Clark BC et al (2008) Geochemical properties of rocks and soils in Gusev Crater, Mars: results of the alpha particle X-ray spectrometer from cumberland ridge to home plate. J Geophys Res [Internet] 113(E12):E12S39 [cited 2018 Nov 8]. https://doi.org/10.1029/2008JE003195

  20. Zipfel J, Schröder C, Jolliff BL, Gellert R, Herkenhoff KE, Rieder R et al (2011) Bounce Rock—a shergottite-like basalt encountered at Meridiani Planum, Mars. Meteorit Planet Sci 46(1):1–20

    Google Scholar 

  21. Christensen PR, Wyatt MB, Glotch TD, Rogers AD, Anwar S, Arvidson RE et al (2004) Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover. Science [Internet] 306(5702):1733–1739 [cited 2018 Nov 10]. http://www.ncbi.nlm.nih.gov/pubmed/15576609

  22. Cousin A, Sautter V, Payré V, Forni O, Mangold N, Gasnault O et al (2017) Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus 288:265–283

    Article  Google Scholar 

  23. Sautter V, Toplis MJ, Beck P, Mangold N, Wiens R, Pinet P et al (2016) Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data. Lithos 254–255:36–52

    Google Scholar 

  24. Payré V, Fabre C, Cousin A, Sautter V, Wiens RC, Forni O et al (2017) Alkali trace elements in Gale crater, Mars, with ChemCam: calibration update and geological implications. J Geophys Res Planets [Internet] 122(3):650–679 [cited 2019 Mar 27]. https://doi.org/10.1002/2016JE005201

  25. Yen AS, Gellert R, Schröder C, Morris RV, Bell JF, Knudson AT et al (2005) An integrated view of the chemistry and mineralogy of martian soils. Nature 436:49–54

    Google Scholar 

  26. McSween HY, Murchie SL, Crisp JA, Bridges NT, Anderson RC, Bell JF et al (1999) Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. J Geophys Res Planets [Internet] 104(E4):8679–8715 [cited 2018 Oct 26]. https://doi.org/10.1029/98JE02551

  27. Papike JJ, Karner JM, Shearer CK, Burger PV (2009) Silicate mineralogy of martian meteorites. Geochim Cosmochim Acta 73(24):7443–7485

    Google Scholar 

  28. Hamilton VE, Christensen PR, McSween HY, Bandfield JL (2003) Searching for the source regions of martian meteorites using MGS TES: integrating martian meteorites into the global distribution of igneous materials on Mars. Meteorit Planet Sci 38(6):871–885

    Google Scholar 

  29. Hamilton VE, Wyatt MB, McSween HY, Christensen PR (2001) Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer. J Geophys Res Planets [Internet] 106(E7):14733–14746 [cited 2019 Jan 19]. https://doi.org/10.1029/2000JE001353

  30. McSween HY, Taylor GJ, Wyatt MB (2009) Elemental composition of the Martian crust. Science (80–) 324(5928):736–739

    Google Scholar 

  31. Sautter V, Fabre C, Forni O, Toplis MJ, Cousin A, Ollila AM et al (2014) Igneous mineralogy at Bradbury Rise: the first ChemCam campaign at Gale crater. J Geophys Res Planets [Internet] 119(1):30–46 [cited 2019 Mar 27]. https://doi.org/10.1002/2013JE004472

  32. Cousin A, Sautter V, Mangold N, Fabre C, Forni O, Rapin W et al (2015) Igneous rock classification at Gale (Sols 13–800). In: Lunar and planetary science conference, p 2452

    Google Scholar 

  33. Ollila AM, Newsom HE, Clark B, Wiens RC, Cousin A, Blank JG et al (2014) Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: early results for Gale crater from Bradbury Landing Site to Rocknest. J Geophys Res E Planets 119:255–285

    Article  Google Scholar 

  34. Anderson R, Bridges JC, Williams A, Edgar L, Ollila A, Williams J et al (2015) ChemCam results from the Shaler outcrop in Gale crater, Mars. Icarus 249:2–21

    Google Scholar 

  35. Meslin PY, Gasnault O, Forni O, Schroder S, Cousin A, Berger G et al (2013) Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars. Science (80–) 341(6153):1238670–1238670

    Google Scholar 

  36. Morris RV, Klingelhöfer G, Schröder C, Fleischer I, Ming DW, Yen AS et al (2008) Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: results from the Mössbauer instrument on the Spirit Mars Exploration Rover. J Geophys Res 113(E12):E12S42

    Google Scholar 

  37. Chevrier V, Mathé PE (2007) Mineralogy and evolution of the surface of Mars: a review. Planet Space Sci 55(3):289–314

    Google Scholar 

  38. Schmidt ME, Ruff SW, McCoy TJ, Farrand WH, Johnson JR, Gellert R et al (2008) Hydrothermal origin of halogens at Home Plate, Gusev Crater. J Geophys Res 113(E6):E06S12

    Google Scholar 

  39. Ruff SW, Farmer JD, Calvin WM, Herkenhoff KE, Johnson JR, Morris RV et al (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. J Geophys Res 22:116

    Google Scholar 

  40. Yen AS, Morris RV, Clark BC, Gellert R, Knudson AT, Squyres S et al (2008) Hydrothermal processes at Gusev Crater: an evaluation of Paso Robles class soils. J Geophys Res [Internet] 113(E6):E06S10 [cited 2018 Nov 7]. https://doi.org/10.1029/2007JE002978

  41. Michalski JR, Dobrea EZN, Niles PB, Cuadros J (2017) Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat Commun [Internet] 8(1):1–10 [cited 2020 Aug 24]. www.nature.com/naturecommunications

  42. Golden DC, Ming DW, Morris RV, Graff TG (2008) Hydrothermal synthesis of hematite spherules and jarosite: implications for diagenesis and hematite spherule formation in sulfate outcrops at Meridiani Planum, Mars. Am Mineral [Internet] 93(8–9):1201–1214 [cited 2019 Jun 1]. https://pubs.geoscienceworld.org/ammin/article/93/8-9/1201-1214/44769

  43. Hynek BM, Arvidson RE, Phillips RJ (2002) Geologic setting and origin of Terra Meridiani hematite deposit on Mars. J Geophys Res [Internet] 107(E10):5088 [cited 2019 May 26]. https://doi.org/10.1029/2002JE001891

  44. McKeown NK, Bishop JL, Noe Dobrea EZ, Ehlmann BL, Parente M, Mustard JF et al (2009) Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. J Geophys Res [Internet] 114:E00D10 [cited 2019 Dec 9]. https://doi.org/10.1029/2008JE003301

  45. Bishop JL, Dobrea EZN, McKeown NK, Parente M, Ehlmann BL, Michalski JR et al (2008) Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science [Internet] 321(5890):830–833 [cited 2019 Apr 8]. http://www.ncbi.nlm.nih.gov/pubmed/18687963

  46. McKeown N, Bishop JL, Cuadros J, Hillier S, Amador E, Makarewicz HD et al (2011) Interpretation of reflectance spectra of clay mineral-silica mixtures: implications for Martian clay mineralogy at Mawrth Vallis. Clays Clay Miner 59(4):400–415(16)

    Google Scholar 

  47. Brown AJ, Hook SJ, Baldridge AM, Crowley JK, Bridges NT, Thomson BJ et al (2010) Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of Mars. Earth Planet Sci Lett 297(1–2):174–182

    Google Scholar 

  48. Berger JA, Schmidt ME, Gellert R, Boyd NI, Desouza ED, Flemming RL et al (2017) Zinc and germanium in the sedimentary rocks of Gale Crater on Mars indicate hydrothermal enrichment followed by diagenetic fractionation. J Geophys Res Planets 122(8):1747–1772

    Google Scholar 

  49. Morris RV, Rampe EB, Vaniman DT, Christoffersen R, Yen AS, Morrison SM et al (2020) Hydrothermal precipitation of sanidine (adularia) having full Al,Si structural disorder and specular hematite at Maunakea Volcano (Hawai’i) and at Gale Crater (Mars). J Geophys Res Planets 125(9):e2019JE006324

    Google Scholar 

  50. Liu Y, Ma C, Beckett JR, Chen Y, Guan Y (2016) Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: implications for fluid–rock interaction in the martian crust. Earth Planet Sci Lett 451:251–262

    Google Scholar 

  51. Shearer CK, Papike JJ, Burger PV, Sutton SR, McCubbin FM, Newville M (2011) Direct determination of europium valence state by XANES in extraterrestrial merrillite: implications for REE crystal chemistry and martian magmatism. Am Mineral 96(8–9):1418–1421

    Google Scholar 

  52. Warren PH, Wasson JT (1979) The origin of KREEP. Rev Geophys [Internet] 17(1):73 [cited 2020 Oct 29]. https://doi.org/10.1029/RG017i001p00073

  53. Tartèse R, Anand M, McCubbin FM, Elardo SM, Shearer CK, Franchi IA (2014) Apatites in lunar KREEP basalts: the missing link to understanding the H isotope systematics of the Moon. Geology 42(4):363–366

    Google Scholar 

  54. Snyder GA, Taylor LA, Halliday AN (1995) Chronology and petrogenesis of the lunar highlands alkali suite: cumulates from KREEP basalt crystallization. Geochim Cosmochim Acta 59(6):1185–1203

    Google Scholar 

  55. Usui T, McSween HY, Clark BC (2008) Petrogenesis of high-phosphorous Wishstone Class rocks in Gusev Crater, Mars. J Geophys Res 113(E12):E12S44

    Google Scholar 

  56. Shearer CK, Burger PV, Papike JJ, McCubbin FM, Bell AS (2015) Crystal chemistry of merrillite from Martian meteorites: mineralogical recorders of magmatic processes and planetary differentiation. Meteorit Planet Sci 50(4):649–673

    Google Scholar 

  57. Morgan JW, Anders E (1979) Chemical composition of Mars. Geochim Cosmochim Acta 43(10):1601–1610

    Google Scholar 

  58. McCubbin FM, Nekvasil H, Harrington AD, Elardo SM, Lindsley DH (2008) Compositional diversity and stratification of the Martian crust: inferences from crystallization experiments on the picrobasalt Humphrey from Gusev Crater, Mars. J Geophys Res 113(E11):E11013

    Google Scholar 

  59. Fraeman AA, Korenaga J (2010) The influence of mantle melting on the evolution of Mars. Icarus 210(1):43–57

    Google Scholar 

  60. Grott M, Morschhauser A, Breuer D, Hauber E (2011) Volcanic outgassing of CO2 and H2O on Mars. Earth Planet Sci Lett 308(3–4):391–400

    Google Scholar 

  61. Morschhauser A, Grott M, Breuer D (2011) Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus 212(2):541–558

    Google Scholar 

  62. Balta JB, McSween HY (2013) Water and the composition of Martian magmas. Geology [Internet] 41(10):1115–1118 [cited 2019 Oct 1]. https://pubs.geoscienceworld.org/geology/article/41/10/1115-1118/131070

  63. Jones JH (2015) Various aspects of the petrogenesis of the Martian shergottite meteorites. Meteorit Planet Sci 50(4):674–690

    Google Scholar 

  64. Wang Z, Becker H (2017) Chalcophile elements in Martian meteorites indicate low sulfur content in the Martian interior and a volatile element-depleted late veneer. Earth Planet Sci Lett 463:56–68

    Google Scholar 

  65. Hu S, Lin Y, Zhang J, Hao J, Yamaguchi A, Zhang T et al (2020) Volatiles in the martian crust and mantle: clues from the NWA 6162 shergottite. Earth Planet Sci Lett 530:115902

    Google Scholar 

  66. Lee D-C, Halliday AN (1997) Core formation on Mars and differentiated asteroids. Nature [Internet] 388(6645):854–857 [cited 2019 Oct 12]. http://www.nature.com/articles/42206

  67. Leone G, Tackley PJ, Gerya TV, May DA, Zhu G (2014) Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy. Geophys Res Lett 41(24):8736–8743

    Article  Google Scholar 

  68. Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370(6490):519–527

    Google Scholar 

  69. Wilson L, Head JW (1994) Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys [Internet] 32(3):221 [cited 2018 Sep 22]. https://doi.org/10.1029/94RG01113

  70. Wilson L (1980) Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosion. J Volcanol Geotherm Res 8(2–4):297–313

    Google Scholar 

  71. Wilson L, Head JW (1981) Ascent and eruption of basaltic magma on the Earth and Moon. J Geophys Res Solid Earth [Internet] 86(B4):2971–3001 [cited 2019 Aug 30]. https://doi.org/10.1029/JB086iB04p02971

  72. Head JW, Wilson L (1992) Magma reservoirs and neutral buoyancy zones on Venus: implications for the formation and evolution of volcanic landforms. J Geophys Res [Internet] 97(E3):3877 [cited 2019 Apr 5]. https://doi.org/10.1029/92JE00053

  73. von Quadt A, Erni M, Martinek K, Moll M, Peytcheva I, Heinrich CA (2011) Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39(8):731–734

    Google Scholar 

  74. Keays RR (1995) The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34(1–3):1–18

    Google Scholar 

  75. Czamanske GK, Moore JG (1977) Composition and phase chemistry of sulfide globules in basalt from the Mid-Atlantic Ridge rift valley near 37°N lat. Bull Geol Soc Am 88(4):587–599

    Google Scholar 

  76. Lorand JP (1990) Are spinel Iherzolite xenoliths representative of the abundance of sulfur in the upper mantle? Geochim Cosmochim Acta 54(5):1487–1492

    Google Scholar 

  77. Rossbacher LA, Judson S (1981) Ground ice on Mars: inventory, distribution, and resulting landforms. Icarus [Internet] 45(1):39–59 [cited 2019 Aug 8]. https://www.sciencedirect.com/science/article/pii/0019103581900051

  78. Clifford SM (1993) A model for the hydrologic and climatic behavior of water on Mars. J Geophys Res [Internet] 98(E6):10973 [cited 2019 Apr 5]. https://doi.org/10.1029/93JE00225

  79. Clifford SM, Parker TJ (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus [Internet] 154(1):40–79 [cited 2019 Apr 5]. https://www.sciencedirect.com/science/article/abs/pii/S0019103501966710

  80. Wilson L, Mouginis-Mark PJ (2003) Phreato-magmatic dike-cryosphere interactions as the origin of small ridges north of Olympus Mons, Mars. Icarus 165(2):242–252

    Google Scholar 

  81. Hanna JC, Phillips RJ (2005) Hydrological modeling of the Martian crust with application to the pressurization of aquifers. J Geophys Res [Internet] 110(E1):E01004 [cited 2019 Apr 5]. https://doi.org/10.1029/2004JE002330

  82. Head JW, Wilson L (2007) Heat transfer in volcano-ice interactions on Mars: synthesis of environments and implications for processes and landforms. Ann Glaciol 45:1–13

    Google Scholar 

  83. Clifford SM, Lasue J, Heggy E, Boisson J, McGovern P, Max MD (2010) Depth of the Martian cryosphere: revised estimates and implications for the existence and detection of subpermafrost groundwater. J Geophys Res [Internet] 115(E7):E07001 [cited 2019 Apr 5]. https://doi.org/10.1029/2009JE003462

  84. Bargery AS, Wilson L (2010) Dynamics of the ascent and eruption of water containing dissolved CO2 on Mars. J Geophys Res [Internet] 115:5008 [cited 2019 Apr 22]. https://doi.org/10.1029/2009JE003403

  85. Heggy E, Clifford SM, Grimm RE, Dinwiddie CL, Wyrick DY, Hill BE (2006) Ground-penetrating radar sounding in mafic lava flows: assessing attenuation and scattering losses in Mars-analog volcanic terrains. J Geophys Res 111(E6):E06S04

    Google Scholar 

  86. Grimm RE, Heggy E, Clifford S, Dinwiddie C, McGinnis R, Farrell D (2006) Absorption and scattering in ground-penetrating radar: analysis of the Bishop Tuff. J Geophys Res 111(E6):E06S02

    Google Scholar 

  87. Boisson J, Heggy E, Clifford SM, Frigeri A, Plaut JJ, Farrell WM et al (2009) Sounding the subsurface of Athabasca Valles using MARSIS radar data: exploring the volcanic and fluvial hypotheses for the origin of the rafted plate terrain. J Geophys Res Planets 114(E8):E08003

    Google Scholar 

  88. Picardi G, Plaut JJ, Biccari D, Bombaci O, Calabrese D, Cartacci M et al (2005) Planetary science: radar soundings of the subsurface of Mars. Science (80–) [Internet] 310(5756):1925–1928 [cited 2020 Aug 24]. http://science.sciencemag.org/

  89. Watters TR, Campbell B, Carter L, Leuschen CJ, Plaut JJ, Picardi G et al (2007) Radar sounding of the Medusae Fossae Formation Mars: equatorial ice or dry, low-density deposits? Science [Internet] 318(5853):1125–1128 [cited 2019 Apr 6]. http://www.ncbi.nlm.nih.gov/pubmed/17975034

  90. Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B et al (2018) Radar evidence of subglacial liquid water on Mars. Science [Internet] 361(6401):490–493 [cited 2019 Apr 13]. http://www.ncbi.nlm.nih.gov/pubmed/30045881

  91. Plaut JJ, Picardi G, Safaeinili A, Ivanov AB, Milkovich SM, Cicchetti A et al (2007) Subsurface radar sounding of the south polar layered deposits of Mars. Science (80–) [Internet] 316(5821):92–95 [cited 2020 Aug 31]. http://science.sciencemag.org/

  92. Wallace P, Plank T, Edmonds M, Hauri E (2018) Volatiles in magmas. In: Carroll MR, Holloway JR (eds) Volatiles in Magmas, vol 30. De Gruyter Mouton, 1–517 pp

    Google Scholar 

  93. Taran YA, Hedenquist JW, Korzhinsky MA, Tkachenko SI, Shmulovich KI (1995) Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands. Geochim Cosmochim Acta 59(9):1749–1761

    Article  Google Scholar 

  94. Taran YA, Bernard A, Gavilanes J-C, Lunezheva E, Cortés A, Armienta MA (2001) Chemistry and mineralogy of high-temperature gas discharges from Colima volcano, Mexico. Implications for magmatic gas-atmosphere interaction. J Volcanol Geotherm Res 108:245–264

    Google Scholar 

  95. Henley RW, King PL, Wykes JL, Renggli CJ, Brink FJ, Clark DA et al (2015) Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemosorption. Nat Geosci 8:210–215. https://doi.org/10.1038/NGEO2367

  96. van Hinsberg V, Berlo K, Migdisov AA, Williams-Jones AE (2016) CO2-fluxing collapses metal solubility in magmatic vapor. Geochem Persp Lett 2:169–177. https://doi.org/10.7185/geochemlet.1617

  97. Lorand J-P, Barat J-A, Chevrier V, Sautter V, Pont S (2012) Metal-saturated sulfide assemblages in chaasignite NWA2737; evidence for impact-related sulfur devolatilisation. Meteorit Planet Sci 47:1830–1841

    Article  Google Scholar 

  98. Rodríguez A, van Bergen MJ (2016) Volcanic hydrothermal systems as potential analogues of Martian sulphate-rich terrains. Netherlands J Geosci Geologie en Mijnbouw 95(2):153–169

    Google Scholar 

  99. Christenson BW, Wood CP (1993) Evolution of a vent-hosted hydrothermal system beneath Ruapehu Crater Lake, New Zealand. Bull Volcanol 55:547–565

    Article  Google Scholar 

  100. Delmelle P, Bernard A (1994) Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochim Cosmochim Acta 58(11):2445–2460

    Article  Google Scholar 

  101. Delmelle P, Bernard A (2015) The remarkable chemistry of sulfur in hyper-acid crater lakes: a scientific tribute to Bokuichiro Takano and Minoru Kusakabe. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes, Advances in volcanology. Springer. https://doi.org/10.1007/978-3-642-36833-2_10

  102. Christenson BW, Reyes AG, Young R, Moebis A, Sherburn S, Cole-Baker J et al (2010) Cyclic processes and factors leading to phreatic eruption events: insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. J Volcanol Geotherm Res 191:15–32. https://doi.org/10.1016/j.jvolgeores.2010.01.008

  103. van Hinsberg V, Vigouroux N, Palmer S, Berlo K, Mauri G, Williams-Jones A et al (2017) Element flux to the environment of the passively degassing Kawah Ijen volcano, Indonesia, and implications for estimates of the global volcanic flux. From. In: Ohba T, Capaccioni B, Caudron C (eds) Geochemistry and geophysics of active volcanic lakes. Geological Society, London, Special Publications, p 437. https://doi.org/10.1144/SP437.2

  104. van Hinsberg V, Berlo K, Lowenstern J (2020) An experimental investigation of interaction between andesite and hyperacidic volcanic lake water. Minerals 10:1–21

    Google Scholar 

  105. Ohsawa S, Saito T, Yoshikawa S, Mawatari H, Yamada M, Amita K et al (2010) Color change of lake water at the active crater lake Aso volcano, Yudamari, Japan: is it in response to change in water quality induced by volcanic activity? Limnology 11:207–215. https://doi.org/10.1007/s10201-009-0304-6

  106. Christenson B, Németh K, Rouwet D, Tassi F, Vandemeulebrouck J, Varekamp JC (2015) Volcanic lakes. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer-Heidelberg. https://doi.org/10.1007/978-3-642-36833-2_1

  107. Murphy S, Wright R, Rouwet D (2018) Color and temperature of the crater lakes at Kelimutu volcano through time. Bull Volcanol 80:2. https://doi.org/10.1007/s00445-017-1172-2

  108. Inguaggiato C, Iñiguez E, Peiffer L, Kretzschmar T, Brusca L, Mora-Amador R et al (2018) REE fractionation during the gypsum crystallization in hyperacid sulphate-rich brine: the Poás volcano crater lake (Costa Rica) exploited as laboratory. Gondwana Res 59:87–96. https://doi.org/10.1016/j.gr.2018.02.022

  109. Inguaggiato C, Pappaterra S, Peiffer L, Apollaro C, Brusca L, De Rosa R et al (2020) Mobility of REE from a hyperacid brine to secondary minerals precipitated in a volcanic hydrothermal system: Kawah Ijen crater lake (Java, Indonesia). Sci Total Environ 740:1–14. https://doi.org/10.1016/j.scitotenv.2020.140133

  110. Christenson BW, White S, Britten K, Scott BJ (2017) Hydrological evolution and chemical structure of a hyper-acidic spring-lake system on Whakaari/White Island, NZ. J Volcanol Geotherm Res 346:180–211. https://doi.org/10.1016/j.jvolgeores.2017.06.017

  111. Varekamp JC, Ouimette AP, Herman SW, Flynn KS, Bermúdez A, Delpino D (2009) Naturally acid waters from Copahue volcano, Argentina. Appl Geochem 24(2):208–220

    Article  Google Scholar 

  112. Rowe GL Jr, Oshawa S, Takano B, Brantley SL, Fernández JF, Barquero J (1992) Using Crater Lake chemistry to predict volcanic activity at Poás Volcano, Costa Rica. Bull Volcanol 54:494–503

    Article  Google Scholar 

  113. Rouwet D, Mora-Amador R, Ramírez-Umaña CJ, González G, Inguaggiato S (2017) Dynamic fluid recycling at Laguna Caliente (Poás, Costa Rica) before and during the 2006-ongoing phreatic eruption cycle (2005–10). Geochemistry and Geophysics of Active Volcanic Lakes. In: Ohba T, Capaccioni B, Caudron C (Eds) Geol Soc London, Special Publication, p 437. https://doi.org/10.1144/SP437.11

  114. Ohba T, Hirabayashi J, Nogami K (2008) Temporal changes in the chemistry of lake water within Yugama Crater, Kusatsu-Shirane Volcano, Japan: implications for the evolution of the magmatic–hydrothermal system. J Volcanol Geotherm Res 178:131–144

    Article  Google Scholar 

  115. Christenson BW (2000) Geochemistry of fluids associated with the 1995–1996 eruption if Mt. Ruapehu, New Zealand: signatures and processes in the magmatic-hydrothermal system. J Volcanol Geotherm Res 97:1–30

    Google Scholar 

  116. Takano B, Saitoh H, Takano E (1994) Geochemical implications of subaqueous molten sulfur at Yugama crater lake, Kusatsu-Shirane volcano, Japan. Geochem J 28:199–216

    Article  Google Scholar 

  117. Mora-Amador R, Rouwet D, Vargas P, Oppenheimer C (2019) The extraordinary sulfur volcanism of Poás from 1828 to 2018. In: Tassi F, Vaselli O, Mora-Amador R (eds) Poás Volcano, active volcanoes of the world. Springer. https://doi.org/10.1007/978-3-319-02156-0_3

  118. Rouwet D, Tassi F, Mora-Amador R, Sandri L, Chiarini V (2014) Past, present and future of volcanic lake monitoring. J Volcanol Geotherm Res 272:78–97. https://doi.org/10.1016/j.jvolgeores.2013.12.009

  119. Rouwet D (2021) Volcanic lake dynamics and related hazards. In: Papale P (ed) Forecasting and planning for volcanic hazards, risks and disasters. Elsevier. https://doi.org/10.1016/B978-0-12-818082-2.00011-1

  120. Henley RW (2015) Hyperacidic volcanic lakes, metal sinks and magmatic gas expansion in arc volcanoes. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic Lakes. Springer, Berlin, pp 155–178. https://doi.org/10.1007/978-3-642-36833-2_6

  121. Varekamp JC (2004) Copahue volcano: a modern terrestrial analog for the opportunity landing site? Eos 82(41):401–407

    Article  Google Scholar 

  122. Kikawada Y, Uruga M, Oi T, Honda T (2004) Mobility of lanthanides accompanying the formation of alunite group minerals. J Radioanal Nucl Chem 261:651–659

    Article  Google Scholar 

  123. Klingelhöfer G, Morris RV, Bernhardt B, Schroder S, Rodionov DS, de Souza Jr PA et al (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306:1740–1745

    Article  Google Scholar 

  124. Ehlmann BL, Edwards CS (2014) Mineralogy of the martian surface. Annu Rev Earth Planet Sci 42:291–315

    Article  Google Scholar 

  125. Tosca NJ, McLennan SM, Clark BC, Grotzinger JP, Hurowitz JA, Knoll AH et al (2005) Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth Planet Sci Lett 240:122–148

    Article  Google Scholar 

  126. Rodríguez A, Varekamp JC, van Bergen MJ, Kading TJ, Oonk PB, Gammons CH et al. Acid rivers and lakes at Caviahue-Copahue volcano as potential terrestrial analogues for aqueous paleo-environments on Mars. In: Tassi F, Vaselli O, Caselli A (eds) Copahue volcano. Springer, pp 141–172

    Google Scholar 

  127. Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J et al (2011) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci 4:535–539

    Article  Google Scholar 

  128. Franus W, Wiatros-Motyka MM, Wdowin M (2015) Coal fly ash as a resource for rare earth elements. Environ Sci Pollut R 22:9464–9474

    Article  Google Scholar 

  129. Liang H, Zhang P, Jin Z, DePaoli D (2017) Rare earths recovery and gypsum upgrade from Florida phosphogypsum. Miner Metall Process 34:201–206

    Google Scholar 

  130. Balaram V (2019) Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10:1285–1303

    Article  Google Scholar 

  131. McLeod CL, Krekeler MPS (2017) Sources of extraterrestrial rare earth elements: to the Moon and beyond. Resources 40:1–28

    Google Scholar 

  132. Agee CB, Wilson NV, McCubbin FM, Ziegler K, Polyak VJ et al (2013) Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339:780–785

    Article  Google Scholar 

  133. Shearer CK, Burger PV, Papike JJ, McCubbin FM, Bell AS (2015) Crystal chemistry of merrillite from Martian meteorites: mineralogical recorders of magmatic processes and planetary differentiation. Meteorit Planet Sci 50:649–673

    Article  Google Scholar 

  134. Michard A (1989) Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta 53:745–750

    Article  Google Scholar 

  135. Lewis AJ, Palmer MP, Sturchio C, Kemp AJ (1997) The rare earth element geochemistry of acid sulphate and acid sulphate-chloride geothermal system from Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta 61:695–706

    Article  Google Scholar 

  136. Inguaggiato C, Censi P, Zuddas P, Londoño JM, Chacón Z, Alzate D et al (2015) Geochemistry of REE, Zr and Hf in a wide range of pH and water composition: the Nevado del Ruíz volcano-hydrothermal system (Colombia). Chem Geol 417:125–133. https://doi.org/10.1016/j.chemgeo.2015.09.025

  137. Inguaggiato C, Pérez García MA, Meza Maldonado LF, Peiffer L, Pappaterra S, Brusca L (2020) Precipitation of secondary minerals in acid sulphate-chloride waters traced by major, minor and rare earth elements in waters: the case of Puracé volcano (Colombia). J Volcanol Geothermal Res 407:1–14. https://doi.org/10.1016/j.jvolgeores.2020.107106

  138. Kalacheva E, Taran Y, Kotenko T (2015) Geochemistry and solute fluxes of volcano-hydrothermal system of Shiashkotan, Kuril Islands. J Volcanol Geotherm Res 296:40–54

    Article  Google Scholar 

  139. Kikawada Y, Fukai M, Oi T (2013) Specific REE patterns observed in sulfurous hot springs from a hydrothermal alteration area in Manza, Japan. Procedia Earth Planet Sci 7:428–431

    Article  Google Scholar 

  140. Inguaggiato C, Burbano V, Rouwet D, Garzón G (2017) Geochemical processes assessed by Rare Earth Elements fractionation at “Laguna Verde” acidic-sulphate crater lake (Azufral volcano, Colombia). 79:65–74

    Google Scholar 

  141. Varekamp JC (2015) The chemical composition and evolution of volcanic lakes. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic Lakes. Springer, pp 93–123. https://doi.org/10.1007/978-3-642-36833-2_4

  142. Takano B, Suzuki K, Sugimori K, Ohba T, Fazlullin SM, Bernard A et al (2004) Bathymetric and geochemical investigation of Kawah Ijen crater Lake, East Java, Indonesia. J Volcanol Geotherm Res 135:299–329

    Article  Google Scholar 

  143. Inguaggiato C, Censi P, Zuddas P, D’Alessandro W, Brusca L, Pecoraino G et al (2016) Zirconium–hafnium and rare earth element signatures discriminating the effect of atmospheric fallout from hydrothermal input in volcanic lake water. Chem Geol 433:1–11. https://doi.org/10.1016/j.chemgeo.2016.04.002

  144. Fulignati P, Gioncada A, Sbrana A (1999) Rare-earth element (REE) behaviour in the alteration facies of the active magmatic–hydrothermal system of Vulcano (Aeolian Islands, Italy). J Volcanol Geotherm Res 88:325–342

    Article  Google Scholar 

  145. Dutrizac JE (2017) The behaviour of the rare earth elements during gypsum (CaSO4·2H2O) precipitation. Hydrometallurgy 174:38–46

    Article  Google Scholar 

  146. Dreibus G, Haubold R, Huisl W, Spettel B (2008) The loss of K, REE, Th, and U from a Martian and a terrestrial basalt by acidic leaching. Meteorit Planet Sci 43:1895–1908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rouwet, D., Inguaggiato, C., Leone, G. (2021). Buried Volcano-Hydrothermal Systems and Minerals on Mars. In: Leone, G. (eds) Mars: A Volcanic World. Springer, Cham. https://doi.org/10.1007/978-3-030-84103-4_7

Download citation

Publish with us

Policies and ethics