Skip to main content

Petrologic Evolution of Martian Volcanism and Clues from Meteorites

  • Chapter
  • First Online:
Mars: A Volcanic World
  • 893 Accesses

Abstract

Our knowledge of the formation and evolution of the Martian surface, and thus the fate of its volcanic regions, are revealed in the mineralogy of the crust (as observed by orbiters and landers) and the chemistry hidden within Martian meteorites. The composition of the Martian crust has been estimated from SNC (shergottite—nakhlite—chassignite) meteorites, which are chemically similar to terrestrial basalts. However, these meteorites reveal a complexity in other mineralogies, such as the silicic implications for volcanism across Mars. Although the exact locations of such SNCs are difficult to discern, the variety of geochemical data from these meteorites gives us a clue as to the mineralogical regions, and thus probable varieties of volcanism on Mars. In this chapter, we will explore the Martian meteorites and their clues to the Martian volcanic regions and crustal components of the North–South dichotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newsom H (2007) Geochemical analogs and Martian meteorites. In: Chapman M (ed) The geology of mars. Cambridge Planetary Science, Cambridge University Press

    Google Scholar 

  2. Tuff J, Wade J, Wood B (2013) Volcanism on Mars controlled by early oxidation of the upper mantle. Nat Lett 498:342–346

    Article  Google Scholar 

  3. McSween HY et al (1979) Petrogenetic relationship between Allan Hills 77005 and other achondrites. Earth Planet Sci Lett 45:275–284

    Article  Google Scholar 

  4. Walker D, Stolper EM, Hays JF (1979) Basaltic volcanism: the importance of planet size. Proc Lunar Planet Sci Conf 10:1995–2015

    Google Scholar 

  5. Dreibus G, Wanke H (1985) Mars, a volatile-rich planet. Meteoritics 20:367–381

    Google Scholar 

  6. Nyquist LE et al (2001) Ages and geologic histories ofMartianmeteorites. Space Sci Rev 96:105–164

    Article  Google Scholar 

  7. Treiman AH (2005) The nakhlite meteorites: augite-rich igneous rocks from Mars. Chemie Erde Geochem 65:203–270

    Article  Google Scholar 

  8. Lodders K, Fegley B Jr (1997) An oxygen isotope model for the composition of Mars. Icarus 126(2):373–394

    Article  Google Scholar 

  9. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  10. Werner S (2009) The global martian volcanic evolutionary history. Icarus 201:44–68

    Article  Google Scholar 

  11. Carr MH (1973) Volcanism on Mars. J Geophys Res 78(17):4049–4062

    Article  Google Scholar 

  12. Bleacher JE, Greeley R, Williams DA, Cave SR, Neukum G (2007) Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. J Geophys Res 112:E09005

    Google Scholar 

  13. Hiesinger H, Head JW, Neukum G (2007) Young lava flows on the eastern flank of Ascraeus Mons: rheological properties derived from High Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter (MOLA) data. J Geophys Res 112:5011

    Article  Google Scholar 

  14. Plescia JB, Saunders RS (1979) The chronology of the martian volcanoes. Proceedings of the 10th Lunar Planet Sci: 2841–2859

    Google Scholar 

  15. Neukum G, Hiller K (1981) Martian ages. J Geophys Res 86(15):3097–3121

    Article  Google Scholar 

  16. Wilson L, Mouginis-Mark PJ (2003) Phreatomagmatic explosive origin of Hrad Vallis, Mars. J Geophys Res 108:5082

    Google Scholar 

  17. Greeley R, Spudis PD (1981) Volcanism on Mars. Rev Geophys Space Phys 19:13–41

    Article  Google Scholar 

  18. Poulet F, Mangold N, Loizeau D, Bibring JP, Langevin Y, Michalski J, Gondet B (2008) Abundance of minerals in the phyllosilicate-rich units on Mars. Astron Astrophys 487(2):L41–L44

    Article  Google Scholar 

  19. Jakosky B, Phillips R (2001) Mars’ volatile and climate history. Nature 412(6843):237–244

    Article  Google Scholar 

  20. Phillips RJ, Zuber MT, Solomon SC, Golombek MP, Jakosky BM et al (2001) Ancient geodynamics and global-scale hydrology on Mars. Science 291(5513):2587–2591

    Article  Google Scholar 

  21. Craddock R, Greeley R (2009) Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus 204(2):512–526

    Article  Google Scholar 

  22. Bibring JP, Langevin Y, Mustard JF, Poulet F, Arvidson R et al (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312(5772):400–404

    Google Scholar 

  23. Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE et al (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454(7202):305–309

    Article  Google Scholar 

  24. Plescia JB, Saunders RS (1982) Tectonic history of the Tharsis region, Mars. J Geophys Res Solid Earth 87(B12):9775–9791

    Article  Google Scholar 

  25. Anderson RC, Dohm JM, Golombek MP, Haldemann AF, Franklin BJ et al (2001) Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J Geophys Res Planets 106(E9):20563–20585

    Article  Google Scholar 

  26. Neumann GA, Zuber MT, Wieczorek MA, McGovern PJ, Lemoine FG, Smith DE (2004) Crustal structure of Mars from gravity and topography. J Geophys Res Planets 109(E8):E08002

    Google Scholar 

  27. Solomon SC, Head JW (1982) Evolution of the Tharsis province of Mars: the importance of heterogeneous lithospheric thickness and volcanic construction. J Geophys Res Solid Earth 87(B12):9755–9774

    Article  Google Scholar 

  28. Johnson CL, Phillips RJ (2005) Evolution of the Tharsis region of Mars: insights from magnetic field observations. Earth Planet Sci Lett 230(3–4):241–254

    Article  Google Scholar 

  29. Head JW III, Kreslavsky MA, Pratt S (2002) Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J Geophys Res Planets 107(E1):1–3

    Article  Google Scholar 

  30. Tanaka K, Scott D (1987) Geological map of the polar regions of Mars. USGS Miscellaneous Investigations Series Map I–1802–C

    Google Scholar 

  31. Greeley R, Schneid BD (1991) Magma generation on Mars: amounts, rates, and comparisons with Earth, Moon, and Venus. Science 254(5034):996–998

    Article  Google Scholar 

  32. Debaille V, Brandon AD, Yin QZ, Jacobsen B (2007) Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars. Nature 450(7169):525–528

    Article  Google Scholar 

  33. Baratoux D, Toplis MJ, Monnereau M, Sautter V (2013) The petrological expression of early Mars volcanism. J Geophys Res Planets 118(1):59–64

    Article  Google Scholar 

  34. Zuber MT (2001) The crust and mantle of Mars. Nature 412(6843):220–227

    Article  Google Scholar 

  35. Wieczorek MA, Zuber MT (2004) Thickness of the Martian crust: improved constraints from geoid-to-topography ratios. J Geophys Res Planets 109(E1):E01009

    Article  Google Scholar 

  36. Mezger K, Debaille V, Kleine T (2013) Core formation and mantle differentiation on Mars. Space Sci Rev 174:27–48

    Article  Google Scholar 

  37. Dauphas N, Pourmand A (2011) Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473(7348):489–492

    Article  Google Scholar 

  38. Lee D-C, Halliday AN (1997) Core formation on Mars and differentiated asteroids. Nature 388(6645):854

    Article  Google Scholar 

  39. Debaille V, Brandon AD, O’Neill C, Yin Q-Z, Jacobsen B (2009) Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nat Geosci 2(8):548–552

    Article  Google Scholar 

  40. Debaille V, Yin Q-Z, Brandon AD, Jacobsen B (2008) Martian mantle mineralogy investigated by the 176Lu–176Hf and 147Sm–143Nd systematics of shergottites. Earth Planet Sci Lett 269(1):186–199

    Article  Google Scholar 

  41. Marty B, Marti K (2002) Signatures of early differentiation of Mars. Earth Planet Sci Lett 196(3):251–263

    Article  Google Scholar 

  42. Solomon SC, Aharonson O, Aurnou JM, Banerdt WB, Carr MH, Dombard AJ et al (2005) New perspectives on ancient Mars. Science 307(5713):1214–1220

    Article  Google Scholar 

  43. Wood JA, Dickey JS Jr, Marvin UB, Powell BN (1970) Lunar anorthosites and a geophysical model of the moon. Geochim Cosmochim Acta Suppl 1:965

    Google Scholar 

  44. Carter J, Poulet F (2013) Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nat Geosci 6(12):1008–1012

    Article  Google Scholar 

  45. Elkins‐Tanton LT, Hess PC, Parmentier EM (2005) Possible formation of ancient crust on Mars through magma ocean processes. J Geophys Res Planets 110(E12):E12S01

    Google Scholar 

  46. Elkins-Tanton LT (2012) Magma oceans in the inner solar system. Annu Rev Earth Planet Sci 40(1):113–139

    Article  Google Scholar 

  47. Humayun M, Nemchin A, Zanda B, Hewins RH, Grange M, Kennedy A et al (2013) Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503(7477):513–516

    Article  Google Scholar 

  48. Zuber MT, Solomon SC, Phillips RJ, Smith DE, Tyler GL, Aharonson O et al (2000) Internal structure and early thermal evolution of Mars from Mars global surveyor topography and gravity. Science 287(5459):1788–1793

    Article  Google Scholar 

  49. Xiao L, Huang J, Christensen PR, Greeley R, Williams DA, Zhao J et al (2012) Ancient volcanism and its implication for thermal evolution of Mars. Earth Planet Sci Lett 323:9–18

    Article  Google Scholar 

  50. Bottke WF, Andrews-Hanna JC (2017) A post-accretionary lull in large impacts on early Mars. Nat Geosci 10(5):344–348

    Article  Google Scholar 

  51. Carr MH, Head JW (2010) Geologic history of Mars. Earth Planet Sci Lett 294(3):185–203

    Article  Google Scholar 

  52. Hartmann WK, Neukum G (2001) Cratering chronology and the evolution of Mars. Chronology and evolution of Mars. Springer, pp 165–194

    Google Scholar 

  53. Wyatt MB, McSween HY, Tanaka KL, Head JW (2004) Global geologic context for rock types and surface alteration on Mars. Geology 32(8):645–648

    Article  Google Scholar 

  54. Nimmo F, Stevenson DJ (2001) Estimates of Martian crustal thickness from viscous relaxation of topography. J Geophys Res 106:5085–5098

    Article  Google Scholar 

  55. Bertka CM, Fei Y (1998) Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars. Earth Planet Sci Lett 157(1):79–88

    Article  Google Scholar 

  56. Baratoux D, Samuel H, Michaut C, Toplis MJ, Monnereau M, Wieczorek M et al (2014) Petrological constraints on the density of the Martian crust. J Geophys Res Planets 119(7):1707–1727

    Article  Google Scholar 

  57. Wray JJ, Hansen ST, Dufek J, Swayze GA, Murchie SL, Seelos FP et al (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nat Geosci 6(12):1013–1017

    Article  Google Scholar 

  58. Bandfield JL (2006) Extended surface exposures of granitoid compositions in Syrtis Major, Mars. Geophys Res Lett 33(6):L06203

    Google Scholar 

  59. Bandfield JL (2002) Global mineral distributions on Mars. J Geophys Res Planets 107(E6):1–9

    Google Scholar 

  60. Flahaut J, Quantin C, Clenet H, Allemand P, Mustard JF, Thomas P (2012) Pristine Noachian crust and key geologic transitions in the lower walls of Valles Marineris: insights into early igneous processes on Mars. Icarus 221(1):420–435

    Article  Google Scholar 

  61. Tanaka KL, Robbins SJ, Fortezzo CM, Skinner JA Jr, Hare TM (2014) The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planet Space Sci 95:11–24

    Article  Google Scholar 

  62. Poulet F, Mangold N, Platevoet B, Bardintzeff J-M, Sautter V, Mustard JF et al (2009) Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data: 2. Petrological implications. Icarus 201(1):84–101

    Article  Google Scholar 

  63. Mustard J, Murchie S, Erard S, Sunshine J (1997) In situ compositions of Martian volcanics: inmplications for the mantle. JGR 102(E11):25605–25615

    Article  Google Scholar 

  64. Carter J, Poulet F, Bibring J-P, Mangold N, Murchie S (2013) Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J Geophys Res Planets 118(4):831–858

    Article  Google Scholar 

  65. Ehlmann BL, Mustard JF, Murchie SL, Bibring J-P, Meunier A, Fraeman AA et al (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479(7371):53–60

    Article  Google Scholar 

  66. Skok JR, Mustard JF, Tornabene LL, Pan C, Rogers D, Murchie SL. (2012), A spectroscopic analysis of Martian crater central peaks: formation of the ancient crust. J Geophys Res Planets 117(E11):E00J18

    Google Scholar 

  67. Taylor SR, McLennan S (2009) Planetary crusts: their composition, origin and evolution, vol 10. Cambridge University Press, Cambridge

    Google Scholar 

  68. Michalski JR, Bleacher JE (2013) Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars. Nature 502(7469):47–52

    Article  Google Scholar 

  69. Grott M, Baratoux D, Hauber E, Sautter V, Mustard J, Gasnault O et al (2013) Long-term evolution of the Martian crust-mantle system. Space Sci Rev 174(1–4):49–111

    Article  Google Scholar 

  70. Leone G (2016) Alignments of volcanic features in the southern hemisphere of Mars produced by migrating mantle plumes. J Volcanol Geotherm Res 309:78–95

    Article  Google Scholar 

  71. Greeley R, Foing BH, McSween HY, Neukum G, Pinet P, van Kan M et al (2005) Fluid lava flows in Gusev crater, Mars. J Geophys Res E Planets 110:E05008

    Article  Google Scholar 

  72. McSween HY, Ruff SW, Morris RV, Bell JF, Herkenhoff K, Gellert R et al (2006) Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. J Geophys Res 111(E9):E09S91

    Google Scholar 

  73. Filiberto J, Dasgupta R (2011) Fe2+–Mg partitioning between olivine and basaltic melts: applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth Planet Sci Lett 304(3–4):527–537

    Article  Google Scholar 

  74. Squyres SW, Arvidson RE, Blaney DL, Clark BC, Crumpler L, Farrand WH et al (2006) Rocks of the Columbia Hills. J Geophys Res Planets 111(E2):E02S11

    Google Scholar 

  75. Arvidson RE, Squyres SW, Anderson RC, Bell JF, Blaney D, Brückner J et al (2006) Overview of the spirit Mars exploration Rover Mission to Gusev Crater: landing site to Backstay Rock in the Columbia Hills. J Geophys Res Planets 111(E2):E02S01

    Google Scholar 

  76. Cousin A, Sautter V, Payré V, Forni O, Mangold N, Gasnault O et al (2017) Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus 288:265–283

    Article  Google Scholar 

  77. Sallé B, Lacour JL, Mauchien P, Fichet P, Maurice S, Manhes G (2006) Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere. Spectrochim Acta Part B 61(3):301–313

    Article  Google Scholar 

  78. Sautter V, Toplis MJ, Wiens RC, Cousin A, Fabre C, Gasnault O et al (2015) In situ evidence for continental crust on early Mars. Nat Geosci 8(8):605–609

    Article  Google Scholar 

  79. Sautter V, Fabre C, Forni O, Toplis MJ, Cousin A, Ollila AM et al (2014) Igneous mineralogy at Bradbury Rise: the first ChemCam campaign at Gale crater. J Geophys Res Planets 119(1):30–46

    Article  Google Scholar 

  80. Schmidt ME, Campbell JL, Gellert R, Perrett GM, Treiman AH, Blaney DL et al (2014) Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: evidence for and significance of an alkali and volatile-rich igneous source. J Geophys Res Planets 119(1):64–81

    Article  Google Scholar 

  81. Boynton WV, Feldman WC, Mitrofanov IG, Evans LG, Reedy RC et al (2004) The Mars Odyssey gamma-ray spectrometer instrument suite. In: 2001 Mars Odyssey. Springer, Dordrecht, pp 37–83

    Google Scholar 

  82. Baratoux D, Toplis MJ, Monnereau M, Gasnault O (2011) Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 472(7343):338–341

    Article  Google Scholar 

  83. Rogers AD, Bandfield JL, Christensen PR (2007) Global spectral classification of Martian low‐albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS‐TES) data. J Geophys Res Planets 112(E2):E02004

    Google Scholar 

  84. Mustard JF, Poulet F, Gendrin A, Bibring JP, Langevin Y et al (2005) Olivine and pyroxene diversity in the crust of Mars. Science 307(5715):1594–1597

    Article  Google Scholar 

  85. Pinet PC, Heuripeau F, Clenet H, Chevrel S, Daydou Y et al (2007) Mafic mineralogy variations across Syrtis Major shield and surroundings as inferred from visible-near-infrared spectroscopy by OMEGA/Mars Express. In: Seventh international Mars conference, Pasadena, CA, Abstract, vol 3146

    Google Scholar 

  86. Cloutis EA, Gaffey MJ (1991) Pyroxene spectroscopy revisited: spectral-compositional correlations and relationship to geothermometry. J Geophys Res Planets 96(E5):22809–22826

    Article  Google Scholar 

  87. Koeppen WC, Hamilton VE (2008) Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J Geophys Res Planets 113(E5):E05001

    Google Scholar 

  88. Ding N, Bray VJ, McEwen AS, Mattson SS, Okubo CH, Chojnacki M, Tornabene LL (2015) The central uplift of Ritchey crater, Mars. Icarus 252:255–270

    Article  Google Scholar 

  89. McGetchin TR, Smith JR (1978) The mantle of Mars: Some possible geological implications of its high density. Icarus 34(3):512–536

    Article  Google Scholar 

  90. Hamilton VE, Christensen PR, McSween HY, Bandfield JL (2003) Searching for the source regions of martian meteorites using MGS TES: integrating Martian meteorites into the global distribution of igneous materials on Mars. Meteorit Planet Sci 38(6):871–885

    Article  Google Scholar 

  91. Wyatt MB, McSween HY (2002) Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 417(6886):263–266

    Article  Google Scholar 

  92. Chevrier V, Mathé PE (2007) Mineralogy and evolution of the surface of Mars: a review. Planet Space Sci 55(3):289–314

    Article  Google Scholar 

  93. Bibring JP, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M et al (2005) Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307(5715):1576–1581

    Article  Google Scholar 

  94. McSween HY, Murchie SL, Crisp JA, Bridges NT, Anderson RC, Bell JF et al (1999) Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. J Geophys Res Planets 104(E4):8679–8715

    Article  Google Scholar 

  95. McSween HY Jr (2002) The rocks of Mars, from far and near. Meteorit Planet Sci 37(1):7–25

    Article  Google Scholar 

  96. Bandfield JL, Hamilton VE, Christensen PR, McSween Jr HY (2004) Identification of quartzofeldspathic materials on Mars. J Geophys Res Planets 109(E10):E10009

    Google Scholar 

  97. Hamilton VE, Wyatt MB, McSween Jr HY, Christensen PR (2001) Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer. J Geophys Res Planets 106(E7):14733–14746

    Google Scholar 

  98. Papike J, Karner J, Shearer C, Burger P (2009) Silicate mineralogy of martian meteorites. Geochim Et Cosmochem Acta 73:7443–7485

    Article  Google Scholar 

  99. Schwertmann U (1958) The effect of pedogenic environments on iron oxide minerals. Advances in soil science. Springer, New York, NY, pp 171–200

    Google Scholar 

  100. Bell JF, McSween HY, Crisp JA, Morris RV, Murchie SL et al (2000) Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder. J Geophys Res Planets 105(E1):1721–1755

    Article  Google Scholar 

  101. Foley CN, Economou T, Clayton RN (2003). Final chemical results from the Mars Pathfinder alpha proton X‐ray spectrometer. J Geophys Res Planets 108(E12):8096

    Google Scholar 

  102. McCoy TJ, Sims M, Schmidt ME, Edwards L, Tornabene LL, Crumpler LS et al (2008) Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars. J Geophys Res Planets 113(E6):E06S03

    Google Scholar 

  103. Ody A, Poulet F, Bibring JP, Loizeau D, Carter J, Gondet B et al (2013) Global investigation of olivine on Mars: insights into crust and mantle compositions. J Geophys Res Planets 118(2):234–262

    Article  Google Scholar 

  104. Sautter V, Toplis MJ, Beck P, Mangold N, Wiens R, Pinet P et al (2016), Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data. Lithos 254–255

    Google Scholar 

  105. Adams J, McCord T (1969) Mars: interpretation of spectral reflectivity of light and dark regions. JGR 74(20):4851–4856

    Article  Google Scholar 

  106. McCord T, Clark R, Singer R (1982) Mars: near-infrared spectral reflectance of surface regions and compositional implications. JGR Solid Earth 87(B4):3021–3032

    Google Scholar 

  107. Reyes D, Christensen P (1994) Evidence for Komatiite-type lavas on Mars from Phobos ISM data and other observations. GRL 21(10):887–890

    Article  Google Scholar 

  108. Mustard J, Sunshine J (1995) Seeing through the dust: Martian crustal heterogeneity and links to the SNC meteorites. Science 267(5204):1623–1626

    Article  Google Scholar 

  109. Wilson L, Head J III (1994) Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys 32(3):221–263

    Article  Google Scholar 

  110. Flahaut J (2011) Minéralogie de Valles Marineris (Mars) par imagerie hyperspectrale: histoire magmatique et sédimentaire de la region. Doctoral dissertation

    Google Scholar 

  111. Williams DA, Greeley R, Werner SC, Michael G, Crown DA, Neukum G, Raitala J (2008) Tyrrhena Patera: geologic history derived from Mars express high resolution stereo camera. J Geophys Res Planets 113(E11):E11005

    Google Scholar 

  112. Salvatore MR, Mustard JF, Wyatt MB, Murchie SL (2010) Definitive evidence of Hesperian basalt in Acidalia and Chryse planitiae. J Geophys Rese Planets 115(E7):E07005

    Google Scholar 

  113. Stockstill-Cahill KR, Scott AF, Hamilton VE (2008) A study of low-albedo deposits within Amazonis Planitia craters: evidence for locally derived ultramafic to mafic materials. J Geophys Res 113:E07008

    Google Scholar 

  114. Mangold N, Loizeau D, Poulet F, Ansan V et al (2010) Mineralogy of recent volcanic plains in the Tharsis region, Mars, and implications for platy-ridged flow composition. Earth Planet Sci Lett 294:440–450

    Article  Google Scholar 

  115. Farrand WH, Lane MD, Edwards BR, Yingst RA (2011) Spectral evidence of volcanic cryptodomes on the northern plains of Mars. Icarus 211(1):139–156

    Article  Google Scholar 

  116. Rogers AD, Nekvasil H (2015) Feldspathic rocks on Mars: compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophys Res Lett 42(8):2619–2626

    Article  Google Scholar 

  117. Connerney JEP, Acuña MH, Ness NF, Kletetschka G, Mitchell DL, Lin RP et al (2005) Tectonic implications of Mars crustal magnetism. Proc Natl Acad Sci 102(42):14970–14975

    Article  Google Scholar 

  118. Glotch TD, Bandfield JL, Tornabene LL, Jensen HB, Seelos FP (2010) Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophys Res Lett 37(16)

    Google Scholar 

  119. Osterloo MM, Hamilton VE, Bandfield JL, Glotch TD, Baldridge AM, Christensen PR et al (2008) Chloride-bearing materials in the southern highlands of Mars. Science 319(5870):1651–1654

    Article  Google Scholar 

  120. Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM et al (2011) Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J Geophys Res 116(E1):E01001

    Google Scholar 

  121. Hodges CA, Moore HJ (1994) Atlas of volcanic landforms on Mars. USGS Prof. paper, p 1534. Washington

    Google Scholar 

  122. Scott DH, Tanaka KL (1986) Geologic map of western equatorial region of Mars. U.S. Geol. Surv. Misc. Invest Ser., Map I-1802-A

    Google Scholar 

  123. Chapman MG, Neukum G, Dumke A, Michael G, van Gasselt S, Kneissl T, Zuschneid W, Hauber E, Mangold N (2010) Amazonian geologic history of the Echus Chasma and Kasei Valles system on Mars: nsew data and interpretations. Earth Planet Sci Lett 294(3–4):238–255

    Article  Google Scholar 

  124. Keszthelyi L, McEwen A, Thordarson T (2000) Terrestrial analogs and thermal models for Martian flood lavas. J Geophys Res 105(E6):15027–15049

    Article  Google Scholar 

  125. Vaucher JD, Baratoux TMJ, Pinet P, Mangold N, Kurita K (2009) The morphologies of volcanic landforms at Central Elysium Planitia: evidence for recent and fluid lavas on Mars. Icarus 200:39–51

    Google Scholar 

  126. Fritz J, Artemieva N, Greshake A (2005) Ejection of Martian meteorites. Meteorit Planet Sci 40(9–10):1393–1411

    Article  Google Scholar 

  127. Udry A, Howarth G, Herd C, Day J, Lapen T, Filiberto J (2020) What martian meteorites reveal about the interior and surface of Mars. JGR Planets 125(12):e2020JE006523

    Google Scholar 

  128. McSween HY (1994) What we have learned about Mars from SNC meteorites. Meteoritics 29(6)

    Google Scholar 

  129. Bouvier A, Blichert-Toft J, Albarède F (2009) Martian meteorite chronology and the evolution of the interior of Mars. Earth Planet Sci Lett 280(1–4):285–295

    Article  Google Scholar 

  130. Clayton RN, Mayeda TK (1983) Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites. Earth Planet Sci Lett 62:106

    Article  Google Scholar 

  131. Eugster O, Herzog GF, Marti K, Caffee MW (2006) Irradiation records, cosmic-ray exposure ages, and transfer times of meteorites. Meteorit Early Solar Syst II:829–851

    Article  Google Scholar 

  132. McSween HY (1984) SNC meteorites—are they martian rocks? Geology 12:3–6

    Article  Google Scholar 

  133. Shih CY et al (1982) Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and Alha77005—late magmatism on a geologically active planet. Geochim Cosmochim Acta 46:2323–2344

    Article  Google Scholar 

  134. Becker RH, Pepin RO (1984) The case for a martian origin of the shergottites: nitrogen and noble gases in EETA-79001. Earth Planet Sci Lett 69:225–242

    Article  Google Scholar 

  135. Bogard DD, Johnson P (1983) Martian gases in an Antarctic meteorite. Science 221:651–654

    Article  Google Scholar 

  136. Borg LE, Nyquist LE, Wiesmann H, Reese Y (2002) Constraints on the petrogenesis of Martian meteorites from the Rb-Sr and Sm-Nd isotopic systematics of the lherzolitic shergottites ALH77005 and LEW88516. Geochim Cosmochim Acta 66(11):2037–2053

    Article  Google Scholar 

  137. Borg LE, Nyquist LE, Wiesmann G, Shih CY, Reese Y (2003) The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics. Geochim Cosmochim Acta 67(18):3519–3536

    Article  Google Scholar 

  138. Brennecka GA, Borg LE, Wadhwa M (2014) Insights into the Martian mantle: the age and isotopics of the meteorite fall Tissint. Meteoritics & Planetary Sciences 49(3):412–418

    Article  Google Scholar 

  139. Cohen BE, Mark DF, Cassata WS, Lee MR, Tomkinson T, Smith CL (2017) Taking the pulse of Mars via dating of a plume-fed volcano. Nat Commun 8(1):640

    Article  Google Scholar 

  140. Lapen TJ, Righter M, Andreasen R, Irving AJ, Satkoski AM, Beard BL et al (2017) Two billion years of magmatism recorded from a single Mars meteorite ejection site. Sci Adv 3(2):e1600922.

    Google Scholar 

  141. Harper CL, Nyquist LE, Bansal B, Wiesmann H, Shih CY (1995) Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science 267(5195):213–217

    Article  Google Scholar 

  142. Wadhwa M, Borg LE (2006) Trace element and 142nd systematics in the nakhlite MIL03346 and the orthopyroxenite ALH84001: implications for the martian mantle. Lunar Planet Sci XXXVII, Houston #2045

    Google Scholar 

  143. McSween HY, Jarosewich E (1983) Petrogenesis of the Elephant Moraine A79001 meteorite multiple magma pulses on the shergottite parent body. Geochim Cosmochim Acta 47:1501–1513

    Article  Google Scholar 

  144. Barrat JA, Jambon A, Bohn M, Gillet P, Sautter V, Gopel C, Lesourd M, Keller F (2002) Petrology and chemistry of the pricritic shergottite NorthWest Africa 1068 (NWA 1068). Geochim Cosmochim Acta 66:3505–3518

    Article  Google Scholar 

  145. Taylor LA et al (2002) Martian meteorite Dhofar 9: a new shergottite. Meteorit Planet Sci 37:1107–1128

    Article  Google Scholar 

  146. Peslier AH, Hnatyshin D, Herd CDK, Walton EL, Brandon AD, Lapen TJ, Shafer JT (2010) Crystallization, melt inclusion, and redox history of a Martian meteorite: olivine-phyric shergottite Larkman Nunatak 06319. Geochim Cosmochim Acta 74(15):4543–4576

    Article  Google Scholar 

  147. Shafer JT, Brandon AD, Lapen TJ, Righter M, Peslier AH, Beard BL (2010) Trace element systematics and 147Sm-143Nd and 176Lu-176Hf ages of Larkman Nunatak 06319: closed-system fractional crystallization of an enriched shergottite magma. Geochim Cosmochim Acta 74(24):7307–7328

    Article  Google Scholar 

  148. Bouvier LC, Costa MM, Connelly JN, Jensen NK, Wielandt D, Storey M et al (2018) Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558(7711):586

    Article  Google Scholar 

  149. Treiman AH, Lindstrom DJ (1997) Trace element geochemistry of Martian iddingsite in the Lafayette meteorite. J Geophys Res Planets 102(E4):9153–9163

    Article  Google Scholar 

  150. Gooding JL (1992) Soil mineralogy and chemistry on Mars: Possible clues from salts and clays in SNC meteorites. Icarus 99(1):28–41

    Article  Google Scholar 

  151. Edwards PH, Bridges JC, Wiens R, Anderson R, Dyar D, Fisk M et al (2017) Basalt-trachybasalt samples in Gale Crater, Mars. Meteorit Planet Sci 20:1–20

    Google Scholar 

  152. Payré V, Siebach KL, Dasgupta R, Udry A, Rampe EB, Morrison SM (2020). Constraining ancient magmatic evolution on Mars using crystal chemistry of detrital igneous minerals in the sedimentary Bradbury group, Gale crater, Mars. J Geophys Res Planets 125(8):e2020JE006467

    Google Scholar 

  153. Ostwald AM, Udry A, Gazel E, Payré V (2020) Assimilation-fractional crystallization on Mars as a formation process for felsic rocks. Paper presented at 51st Lunar and Planetary Institute science conference, Abstract #2200

    Google Scholar 

  154. Agee CB, Wilson NV, McCubbin FM, Ziegler K, Polyak VJ, Sharp ZD et al (2013) Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339(6121):780–785

    Article  Google Scholar 

  155. Mittlefehldt DW (1994) ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan. Meteoritics 29(2):214–221

    Article  Google Scholar 

  156. Lapen TJ, Righter M, Brandon AD, Debaille V, Beard BL, Shafer JT et al (2010) A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328(5976):347–351

    Article  Google Scholar 

  157. Morris RV, Vaniman DT, Blake DF, Gellert R, Chipera SJ et al (2016) Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater. Proc Natl Acad Sci 113(26):7071–7076

    Article  Google Scholar 

  158. McSween HY, Grove TL, Wyatt MB (2003) Constraints on the composition and petrogenesis of the Martian crust. J Geophys Res Planets 108(E12):5135

    Google Scholar 

  159. Deng S, Levander A (2020) Autocorrelation reflectivity of mars. Geophys Res Lett 28:47(16)

    Google Scholar 

  160. Schmidt ME, Perrett GM, Bray SL, Bradley NJ, Lee RE, Berger JA et al (2018) Dusty rocks in gale crater: assessing areal coverage and separating dust and rock contributions in APXS analyses. J Geophys Res Planets 123(7):1649–1673

    Article  Google Scholar 

  161. Stolper EM, Baker MB, Newcombe ME, Schmidt ME, Treiman AH, Cousin A et al (2013) The Petrochemistry of Jake M: A Martian Mugearite. Science 341(6153):1239463

    Article  Google Scholar 

  162. Treiman AH, Bish DL, Vaniman DT, Chipera SJ, Blake DF, Ming DW et al (2016) Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater). J Geophys Res Planets 121(1):75–106

    Article  Google Scholar 

  163. Hewins RH, Zanda B, Humayun M, Nemchin A, Lorand J-P, Pont S et al (2017) Regolith breccia Northwest Africa 7533: Mineralogy and petrology with implications for early Mars. Meteorit Planet Sci 52(1):89–124

    Article  Google Scholar 

  164. Udry A, Gazel E, McSween HY (2018) Formation of Evolved Rocks at Gale Crater by Crystal Fractionation and Implications for Mars Crustal Composition. J Geophys Res Planets 123(6):1525–1540

    Article  Google Scholar 

  165. Wittmann A, Korotev RL, Jolliff BL, Irving AJ, Moser DE, Barker I et al (2015) Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475. Meteorit Planet Sci 50(2):326–352

    Article  Google Scholar 

  166. Weiss BP, Vali H, Baudenbacher FJ, Kirschvink JL, Stewart ST, Shuster DL (2002) Records of an ancient Martian magnetic field in ALH84001. Earth Planet Sci Lett 201(3–4):449–463

    Article  Google Scholar 

  167. Santos AR, Agee CB, McCubbin FM, Shearer CK, Burger PV, Tartèse R, Anand M (2015) Petrology of igneous clasts in Northwest Africa 7034: implications for the petrologic diversity of the martian crust. Geochim Cosmochim Acta 157:56–85

    Article  Google Scholar 

  168. Gaillard F, Scaillet B (2009) The sulfur content of volcanic gases on Mars. Earth Planet Sci Lett 279(1–2):34–43

    Article  Google Scholar 

  169. Farquhar J, Savarino J, Jackson TL, Thiemens MH (2000) Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature 404(6773):50–52

    Article  Google Scholar 

  170. Halevy I, Zuber MT, Schrag DP (2007) A sulfur dioxide climate feedback on early Mars. Science 318(5858):1903–1907

    Article  Google Scholar 

  171. Righter K, Pando K, Danielson LR (2009) Experimental evidence for sulfur-rich martian magmas: implications for volcanism and surficial sulfur sources. Earth Planet Sci Lett 288(1–2):235–243

    Article  Google Scholar 

  172. O'Neill C, Lenardic A, Jellinek AM, Kiefer WS (2007). Melt propagation and volcanism in mantle convection simulations, with applications for Martian volcanic and atmospheric evolution. J Geophys Res Planets 112(E7):E07003

    Google Scholar 

  173. Di Genova D, Hess KU, Chevrel MO, Dingwell DB (2016) Models for the estimation of Fe3+/Fetot ratio in terrestrial and extraterrestrial alkali-and iron-rich silicate glasses using Raman spectroscopy. Am Miner 101(4):943–952

    Article  Google Scholar 

  174. Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Ja-son-1 reveals buried tectonic structure. Science 346:65–67

    Article  Google Scholar 

  175. Filiberto J (2017) Geochemistry of Martian basalts with constraints on magma genesis. Chem Geol 466:1–14

    Article  Google Scholar 

  176. Day JMD, Tait KT, Udry A, Moynier F, Liu Y, Neal CR (2018) Martian magmatism from plume metasomatized mantle. Nat Commun 9(1):4799

    Article  Google Scholar 

  177. Jones JH (1986) A discussion of isotopic systematics and mineral zoning in the shergottites: evidence for a 180 m.y. igneous crystallization age. Geochimica et Cosmochimica Acta 50(6):969–977

    Google Scholar 

  178. Jones JH (1989) Isotopic relationships among the shergottites, the nakhlites and Chassigny. Proceedings of 19th Lunar and planetary science conference:465-474

    Google Scholar 

  179. Wadhwa M (2001) Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291(5508):1527–1530

    Article  Google Scholar 

  180. Herd CDK, Borg LE, Jones JH, Papike JJ (2002) Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim Cosmochim Acta 66(11):2025–2036

    Article  Google Scholar 

  181. Shearer CK, Burger PV, Papike JJ, Borg LE, Irving AJ, Herd C (2008) Petrogenetic linkages among martian basalts. Implications based on trace element chemistry of olivine. Meteorit Planet Sci 43:1241–1258

    Article  Google Scholar 

  182. Jones JH (2003) Constraints on the structure of the martian interior determined from the chemical and isotopic systematics of the SNC meteorites. Meteorit Planet Sci 38:1807–1814

    Article  Google Scholar 

  183. Borg LE, Drake MJ (2005) A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars. J Geophys Res 110(E12), E12S03

    Google Scholar 

  184. Symes SJK, Borg LE, Shearer CK, Irving AJ (2008) The age of the martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites. Geochim Cosmochim Acta 72(6):1696–1710

    Article  Google Scholar 

  185. Blinova A, Herd CDK (2009) Experimental study of polybaric REE partitioning between olivine, pyroxene and melt of the Y 980459 composition: insights into the petrogenesis of depleted shergottites. Geochim Cosmochim Acta 73:3471–3492

    Article  Google Scholar 

  186. Borg LE, Draper DS (2003) A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites. Meteorit Planet Sci 38(12):1713–1731

    Article  Google Scholar 

  187. Leone G, Tackley PJ, Gerya TV, May DA, Zhu G (2014) Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the martian dichotomy. Geophys Res Lett 41(24):8736–8743

    Article  Google Scholar 

  188. Nyquist LE, Borg LE, Shih CY (1998) The Shergottite age paradox and the relative probabilities for Martian meteorites of differing ages. J Geophys Res 103(E13):31445

    Article  Google Scholar 

  189. Walton EL, Kelley SP, Herd CDK (2008) Isotopic and petrographic evidence for young Martian basalts. Geochim Cosmochim Acta 72(23):5819–5837

    Article  Google Scholar 

  190. Treiman AH (1995) S-NC: Multiple source areas for Martian meteorites. J Geophys Res 100(E3):5329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitlin Ahrens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahrens, C., Leone, G. (2021). Petrologic Evolution of Martian Volcanism and Clues from Meteorites. In: Leone, G. (eds) Mars: A Volcanic World. Springer, Cham. https://doi.org/10.1007/978-3-030-84103-4_3

Download citation

Publish with us

Policies and ethics