Skip to main content

The Formation of Mars and the Origin of Its Volcanic Provinces

  • Chapter
  • First Online:
Mars: A Volcanic World
  • 920 Accesses

Abstract

This chapter explores the various hypotheses put forward for the formation of the Martian dichotomy, the topographic difference between the northern lowlands and the southern highlands of the planet. Among the various hypotheses, the Southern Polar Giant Impact (SPGI) was the only one validated with the discovery of twelve volcanic alignments as predicted by the 3D model. Furthermore, this hypothesis is the only one that matches both astronomical and geophysical data available in the literature and all the requirements to be seriously considered as a theory. The various volcanic centres of Mars, including the vast majority being part of the alignments, are described with full detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wänke H, Dreibus G (1994) Chemistry and accretion history of Mars. Philos Trans R Soc London Ser A Phys Eng Sci 349(1690):285–293.

    Google Scholar 

  2. Halliday AN, Wänke H, Birck JL, Clayton RN (2001) The accretion, composition and early differentiation of Mars. Space Sci Rev 96:197–230

    Google Scholar 

  3. Harper CL, Nyquist LE, Bansal B, Wiesmann H, Shih CY (1995) Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science 267(5195):213–217.

    Google Scholar 

  4. Lodders K (1998) A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteorit Planet Sci 33(S4):A183–A190.

    Google Scholar 

  5. Sautter V, Fabre C, Forni O, Toplis MJ, Cousin A, Ollila AM et al (2014) Igneous mineralogy at Bradbury rise: The first ChemCam campaign at Gale crater. J Geophys Res Planets 119(1):30–46.

    Google Scholar 

  6. Sautter V, Toplis MJ, Beck P, Mangold N, Wiens R, Pinet P et al (2016) Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data. Lithos 254–255:36–52

    Google Scholar 

  7. Payré V, Fabre C, Cousin A, Sautter V, Wiens RC, Forni O et al (2017) Alkali trace elements in Gale crater, Mars, with ChemCam: calibration update and geological implications. J Geophys Res Planets [Internet] [cited 2019 Mar 27] 122(3):650–679. http://doi.wiley.com/https://doi.org/10.1002/2016JE005201

  8. Sautter V, Toplis MJ, Wiens RC, Cousin A, Fabre C, Gasnault O et al (2015) In situ evidence for continental crust on early Mars. Nat Geosci [Internet] [cited 2018 Nov 20] 8(8):605–609. http://www.nature.com/articles/ngeo2474

  9. Schmidt ME, Campbell JL, Gellert R, Perrett GM, Treiman AH, Blaney DL et al (2014) Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile-rich igneous source. J Geophys Res Planets [Internet] [cited 2018 Oct 18] 119(1):64–81. http://doi.wiley.com/https://doi.org/10.1002/2013JE004481

  10. McSween HY, Wyatt MB, Gellert R, Bell JF, Morris RV, Herkenhoff KE et al (2006) Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. J Geophys Res Planets 111: E02S10

    Google Scholar 

  11. Rieder R, Economou T, Wänke H, Turkevich A, Crisp J, Brückner J et al (1997) The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. Science [Internet] [cited 2019 Aug 14] 278(5344):1771–1774. http://www.ncbi.nlm.nih.gov/pubmed/9388173

  12. Baird AK, Toulmin P, Clark BC, Rose HJ, Keil K, Christian RP et al (1976) Mineralogic and petrologic implications of viking geochemical results from Mars: interim report. Science [Internet] [cited 2019 Apr 5] 194(4271):1288–1293. http://www.ncbi.nlm.nih.gov/pubmed/17797085

  13. Cousin A, Sautter V, Payré V, Forni O, Mangold N, Gasnault O et al (2017) Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus 288:265-283

    Google Scholar 

  14. Stolper EM, Baker MB, Newcombe ME, Schmidt ME, Treiman AH, Cousin A et al (2013) The petrochemistry of Jake_M: a Martian Mugearite. Science (80-)341(6153):1239463

    Google Scholar 

  15. Ollila AM, Newsom HE, Clark B, Wiens RC, Cousin A, Blank JG et al (2014) Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: early results for Gale crater from Bradbury landing site to rocknest. J Geophys Res E Planets. 119:255–285

    Article  Google Scholar 

  16. Foley CN, Wadhwa M, Borg LE, Janney PE, Hines R, Grove TL (2005) The early differentiation history of Mars from 182 W–142 Nd isotope systematics in the SNC meteorites. Geochim Cosmochim Acta 69(18):4557–4571

    Google Scholar 

  17. Apai D, Pascucci I, Bouwman J, Natta A, Henning T, Dullemond CP (2005) The onset of planet formation in brown dwarf disks. Science 310(5749):834–836.

    Google Scholar 

  18. Amelin Y, Krot AN, Hutcheon ID, Ulyanov AA (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science [Internet] [cited 2019 Oct 11] 297(5587):1678–1683. http://www.ncbi.nlm.nih.gov/pubmed/12215641

  19. Lee D-C, Halliday AN (1997) Core formation on Mars and differentiated asteroids. Nature [Internet] 388(6645):854–857. http://www.nature.com/articles/42206

  20. Righter K, Shearer CK (2003) Magmatic fractionation of Hf and W: constraints on the timing of core formation and differentiation in the Moon and Mars. Geochim Cosmochim Acta [Internet] [cited 2019 Oct 12] 67(13):2497–2507. https://www.sciencedirect.com/science/article/pii/S0016703702013492

  21. Jacobsen SB (2005) The Hf-W isotopic system and the origin of the Earth and Moon. Annu Rev Earth Planet Sci [Internet] [cited 2019 Oct 12] 33(1):531–570. http://www.annualreviews.org/doi/https://doi.org/10.1146/annurev.earth.33.092203.122614

  22. Šrámek O, Milelli L, Ricard Y, Labrosse S (2012) Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus [Internet] [cited 2019 Oct 12] 217(1):339–354. https://www.sciencedirect.com/science/article/pii/S0019103511004489#b0350

  23. Yoshino T, Walter MJ, Katsura T (2003) Core formation in planetesimals triggered by permeable flow. Nature [Internet] [cited 2019 Oct 12] 422(6928):154–157. http://www.nature.com/articles/nature01459

  24. Leone G, Tackley PJ, Gerya TV, May DA, Zhu G (2014) Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy. Geophys Res Lett 41(24):8736–8743

    Article  Google Scholar 

  25. Chambers JE, Wetherill GW (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus [Internet] [cited 2019 Oct 12] 136(2):304–327. https://www.sciencedirect.com/science/article/abs/pii/S0019103598960079

  26. Nimmo F, Kleine T (2007) How rapidly did Mars accrete? Uncertainties in the Hf-W timing of core formation. Icarus 191(2):497–504

    Article  Google Scholar 

  27. Golabek GJ, Keller T, Gerya T V., Zhu G, Tackley PJ, Connolly JAD (2011) Origin of the Martian dichotomy and Tharsis from a giant impact causing massive Magmatism. Icarus 215(1):346-357.

    Google Scholar 

  28. Bercovici D, Ricard Y (2014) Plate tectonics, damage and inheritance. Nature 508(7497):513–516

    Article  Google Scholar 

  29. Foley BJ, Bercovici D, Elkins-Tanton LT (2014) Initiation of plate tectonics from post-magma ocean thermochemical convection. J Geophys Res Solid Earth [Internet] [cited 2020 Jan 17] 119(11):8538–8561. http://doi.wiley.com/https://doi.org/10.1002/2014JB011121

  30. Korenaga J (2013) Initiation and evolution of plate tectonics on earth: theories and observations. Annu Rev Earth Planet Sci [Internet] [cited 2020 Jan 17] 41(1):117–151. http://www.annualreviews.org/doi/https://doi.org/10.1146/annurev-earth-050212-124208

  31. Maruyama S, Santosh M, Azuma S (2018) Initiation of plate tectonics in the Hadean: eclogitization triggered by the ABEL bombardment. Geosci Front 9(4):1033–1048

    Google Scholar 

  32. de Pater I, Davies AG, McGregor A, Trujillo C, Ádámkovics M, Veeder GJ et al (2014) Global near-IR maps from Gemini-N and Keck in 2010, with a special focus on Janus Patera and Kanehekili Fluctus. Icarus [Internet] [cited 2019 Jan 19] 242:379–395. https://www.sciencedirect.com/science/article/pii/S0019103514003303

  33. Leverington DW (2011) A volcanic origin for the outflow channels of Mars: Key evidence and major implications. Geomorphology 132:51–75

    Article  Google Scholar 

  34. Leone G (2020) The absence of an ocean and the fate of water all over the Martian history. Earth Sp Sci [Internet] 7(4):1–16. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1029/2019EA001031

  35. Leone G (2017) Mangala Valles, Mars: a reassessment of formation processes based on a new geomorphological and stratigraphic analysis of the geological units. J Volcanol Geotherm Res 337:62–80

    Article  Google Scholar 

  36. Gillmann C, Lognonné P, Moreira M (2011) Volatiles in the atmosphere of Mars: the effects of volcanism and escape constrained by isotopic data. Earth Planet Sci Lett [Internet] [cited 2019 Apr 5] 303(3–4):299–309. https://www.sciencedirect.com/science/article/pii/S0012821X11000239

  37. Krasnopolsky VA (2015) Variations of the HDO/H2O ratio in the Martian atmosphere and loss of water from Mars. Icarus [Internet] 257:377–386. http://dx.doi.org/https://doi.org/10.1016/j.icarus.2015.05.021

  38. Kurokawa H, Sato M, Ushioda M, Matsuyama T, Moriwaki R, Dohm JM et al (2014) Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in Martian meteorites. Earth Planet Sci Lett 394:179–185

    Article  Google Scholar 

  39. Villanueva GL, Mumma MJ, Novak RE, Käufl HU, Hartogh P, Encrenaz T et al (2015) Strong water isotopic anomalies in the Martian atmosphere: probing current and ancient reservoirs. Science 48(6231):218-221

    Google Scholar 

  40. O’Rourke JG, Korenaga J (2012) Terrestrial planet evolution in the stagnant-lid regime: size effects and the formation of self-destabilizing crust. Icarus 221:1043–1060

    Article  Google Scholar 

  41. Sleep NH (1994) Martian plate tectonics. J Geophys Res 99( E3):5639– 5655

    Google Scholar 

  42. Leone G (2015) Transition Topography (Mars). In: Encyclopedia of planetary landforms. Springer, New York, NY, pp. 1–6. https://doi.org/10.1007/978-1-4614-9213-9_650-1

  43. Leone G (2016) Alignments of volcanic features in the southern hemisphere of Mars produced by migrating mantle plumes. J Volcanol Geotherm Res 309:78–95

    Article  Google Scholar 

  44. Leone G (2016) The Southern polar giant impact hypothesis for the origin of the Martian dichotomy and the evolution of volcanism on Mars. PhDThesis ETH Zurich. https://doi.org/10.3929/ethz-a-010652097

  45. Wise DU, Golombek MP, McGill GE (1979) Tectonic evolution of Mars. J Geophys Res [Internet] [cited 2019 Oct 13] 84(B14):7934. http://doi.wiley.com/https://doi.org/10.1029/JB084iB14p07934

  46. Keller T, Tackley PJ (2009) Towards self-consistent modeling of the Martian dichotomy: the influence of one-ridge convection on crustal thickness distribution. Icarus [Internet] [cited 2019 Oct 13] 202(2):429–443. https://www.sciencedirect.com/science/article/pii/S0019103509001377

  47. Zhong S, Zuber MT (2001) Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet Sci Lett 189:75–84

    Article  Google Scholar 

  48. Roberts JH, Zhong S (2006) Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J Geophys Res [Internet] [cited 2019 Oct 13] 111(E6):E06013. http://doi.wiley.com/https://doi.org/10.1029/2005JE002668

  49. McGill GE, Dimitriou AM (2019) Origin of the Martian global dichotomy by crustal thinning in the Late Noachian or Early Hesperian. J Geophys Res [cited 2019 Oct 13] 95(B8):12595. http://doi.wiley.com/https://doi.org/10.1029/JB095iB08p12595

  50. McGill GE, Squyres SW (1991) Origin of the Martian crustal dichotomy: evaluating hypotheses. Icarus 93(2):386–393

    Article  Google Scholar 

  51. Frey H, Schultz RA (1988) Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys Res Lett [Internet] [cited 2019 Jan 16] 15(3):229–232. http://doi.wiley.com/https://doi.org/10.1029/GL015i003p00229

  52. Wilhelms DE, Squyres SW (1984) The Martian hemispheric dichotomy may be due to a giant impact. Nature [Internet] [cited 2019 Jan 16] 309(5964):138–140. http://www.nature.com/articles/309138a0

  53. Andrews-Hanna JC, Zuber MT, Banerdt WB (2008) The Borealis basin and the origin of the Martian crustal dichotomy. Nature 453:1212–1215

    Google Scholar 

  54. Marinova MM, Aharonson O, Asphaug E (2008) Mega-impact formation of the Mars hemispheric dichotomy. Nature 453:1216–1219

    Google Scholar 

  55. Nimmo F, Hart SD, Korycansky DG, Agnor CB (2008) Implications of an impact origin for the Martian hemispheric dichotomy. Nature 453(7199):1220–1223

    Article  Google Scholar 

  56. Reese CC, Solomatov VS (2006) Fluid dynamics of local Martian magma oceans. Icarus [Internet] [cited 2019 Jan 10] 184(1):102–120. https://www.sciencedirect.com/science/article/pii/S0019103506001308

  57. Reese CC, Solomatov VS (2010) Early Martian dynamo generation due to giant impacts. Icarus [Internet] [cited 2019 Jan 10] 207(1):82–97. https://www.sciencedirect.com/science/article/pii/S0019103509004321

  58. Reese CC, Orth CP, Solomatov VS (2011) Impact megadomes and the origin of the Martian crustal dichotomy. Icarus [Internet] [cited 2019 Jan 10] 213(2):433–442. https://www.sciencedirect.com/science/article/pii/S0019103511001199

  59. Breuer D, Yuen DA, Spohn T, Zhang S (1998) Three dimensional models of Martian mantle convection with phase transitions. Geophys Res Lett [Internet] [cited 2019 Nov 14] 25(3):229–232. http://doi.wiley.com/https://doi.org/10.1029/97GL03767

  60. Elkins‐Tanton LT, Hess PC, Parmentier EM (2005) Possible formation of ancient crust on Mars through magma ocean processes. J Geophys Res Planets 110:E12S01

    Google Scholar 

  61. Elkins-Tanton LT (2008) Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet Sci Lett [Internet] [cited 2019 Oct 13] 271(1–4):181–91. https://www.sciencedirect.com/science/article/pii/S0012821X08002306

  62. Harder H, Christensen UR (1996) A one-plume model of martian mantle convection. Nature 380(6574):507–509

    Google Scholar 

  63. Schubert G, Bercovici D, Glatzmaier GA (1990) Mantle dynamics in Mars and Venus: influence of an immobile lithosphere on three-dimensional mantle convection. J Geophys Res [Internet] [cited 2019 Oct 14] 95(B9):14105. http://doi.wiley.com/https://doi.org/10.1029/JB095iB09p14105

  64. Frey H (2008) Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system. Geophys Res Lett 35(13):L13203

    Article  Google Scholar 

  65. Pierazzo E, Melosh HJ (2000) Melt production in oblique impacts. Icarus [Internet] [cited 2019 Oct 16] 145(1):252–261. https://www.sciencedirect.com/science/article/abs/pii/S0019103599963327

  66. Salvatore MR, Mustard JF, Wyatt MB, Murchie SL (2010) Definitive evidence of Hesperian basalt in Acidalia and Chryse planitiae. J Geophys Res [Internet] [cited 2019 Aug 13] 115(E7):E07005. http://doi.wiley.com/https://doi.org/10.1029/2009JE003519

  67. Salvatore MR, Christensen PR (2014) On the origin of the Vastitas Borealis formation in Chryse and Acidalia Planitiae, Mars. J Geophys Res Planets [Internet] [cited 2019 Jan 10] 119(12):2437–2456. http://doi.wiley.com/https://doi.org/10.1002/2014JE004682

  68. Hopper JP, Leverington DW (2014) Formation of Hrad Vallis (Mars) by low viscosity lava flows. Geomorphology [Internet] [cited 2018 Oct 25] 207:96–113. https://www.sciencedirect.com/science/article/pii/S0169555X13005552

  69. Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res Planets. 98(E3):5319–5333

    Google Scholar 

  70. Kleine T, Münker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418(6901):952–955

    Google Scholar 

  71. Kleine T, Mezger K, Münker C, Palme H, Bischoff A (2004) 182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim Cosmochim Acta 68(13):2935–2946

    Google Scholar 

  72. Lillis RJ, Frey HV, Manga M, Mitchell DL, Lin RP, Acuña MH et al (2008) An improved crustal magnetic field map of Mars from electron reflectometry: highland volcano magmatic history and the end of the Martian dynamo. Icarus 194(2):575–596

    Article  Google Scholar 

  73. Lillis RJ, Robbins S, Manga M, Halekas JS, Frey HV (2013) Time history of the Martian dynamo from crater magnetic field analysis. J Geophys Res Planets [Internet] [cited 2019 Aug 14] 118(7):1488–1511. https://doi.org/10.1002/jgre.20105

  74. Fairén AG, Ruiz J, Anguita F (2002) An origin for the linear magnetic anomalies on Mars through accretion of terranes: implications for dynamo timing. Icarus 160(1):220–223

    Google Scholar 

  75. Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Mitchell D, Anderson KA et al (2001) Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J Geophys Res Planets [Internet] [cited 2019 Nov 16], 106(E10):23403–23417. http://doi.wiley.com/https://doi.org/10.1029/2000JE001404

  76. Farley KA, Malespin C, Mahaffy P, Grotzinger JP, Vasconcelos PM, Milliken RE et al (2014) In situ radiometric and exposure age dating of the Martian surface. Science (80-) [Internet] 343(6169):1247166-1–1247166-5. http://science.sciencemag.org/

  77. Gasparri D, Leone G, Cataldo V, Punjabi V, Nandakumar S (2020) Lava filling of Gale crater from Tyrrhenus Mons on Mars. J Volcanol Geotherm Res 389:106743

    Google Scholar 

  78. Ward WR (1973) Large-scale variations in the obliquity of Mars. Science (80-) 181(4096):260–262

    Google Scholar 

  79. Rubincam DP (1990) Mars: change in axial tilt due to climate? Science (80-) 248(4956):720–721

    Google Scholar 

  80. Neukum G, Jaumann R, Hoffmann H, Hauber E, Head JW, Basilevsky AT et al (2004) Recent and episodic volcanic and glacial activity on Mars revealed by the high resolution stereo camera. Nature 432(7020):971–979

    Google Scholar 

  81. Isherwood RJ, Jozwiak LM, Jansen JC, Andrews-Hanna JC (2013) The volcanic history of Olympus Mons from paleo-topography and flexural modeling. Earth Planet Sci Lett 363:88-96

    Google Scholar 

  82. Plescia JB (1994) Geology of the Small Tharsis Volcanoes: Jovis Tholus, Ulysses Patera, BibIls Patera. Mars. Icarus. 111(1):246–269

    Article  Google Scholar 

  83. Robbins SJ, Achille G Di, Hynek BM (2011) The volcanic history of Mars: high-resolution crater-based studies of the calderas of 20 volcanoes. Icarus [Internet] [cited 2018 Nov 13] 211(2):1179–203. https://www.sciencedirect.com/science/article/pii/S0019103510004318

  84. Neukum G, Hiller K (1981) Martian ages. J Geophys Res Solid Earth [Internet] [cited 2018 Nov 13] 86(B4):3097–3121. http://doi.wiley.com/https://doi.org/10.1029/JB086iB04p03097

  85. Dohm JM, Ferris JC, Baker VR, Anderson RC, Hare TM, Strom RG et al (2001) Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes. J Geophys Res Planets [Internet] 106(E12):32943–32958. http://doi.wiley.com/https://doi.org/10.1029/2000JE001468

  86. Anguita F, Fernández C, Cordero G, Carrasquilla S, Anguita J, Núñez A et al (2006) Evidences for a Noachian-Hesperian orogeny in Mars. Icarus 185(2):331–357

    Google Scholar 

  87. Ghatan GJ (2003) Cavi Angusti, Mars: Characterization and assessment of possible formation mechanisms. J Geophys Res 108(E5):5045–5063

    Article  Google Scholar 

  88. Sharp RP (1973) Mars: South polar pits and etched terrain. J Geophys Res 78(20):4222–4230

    Google Scholar 

  89. Allen CC (1979) Volcano-ice interactions on Mars. J Geophys Res Solid Earth. 84(B14):8048–8059

    Google Scholar 

  90. Mutch T (1976) The geology of Mars [Internet], 1st edn. Princeton University Press, Princeton, NJ [cited 2019 Dec 6], 400 pp. https://www.abebooks.com/first-edition/GEOLOGY-MARS-Mutch-Thomas-A-Princeton/434425546/bd

  91. Carr MH, Head JW (2010) Geologic history of Mars. Earth Planet Sci Lett 294(3):185–203

    Article  Google Scholar 

  92. Tanaka KL, Kolb EJ (2001) Geologic history of the polar regions of Mars based on Mars Global survey data. I. Noachian and Hesperian Periods. Icarus. 154(1):3–21

    Google Scholar 

  93. Cantor B, Malin M, Edgett KS (2002) Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season. J Geophys Res E Planets. 107(E3):5014–5022

    Article  Google Scholar 

  94. Greeley R, Guest JE (1987) Geologic map of the eastern equatorial region of Mars [Internet]. IMAP [cited 2019 Jul 27]. https://pubs.er.usgs.gov/publication/i1802B

  95. Tanaka K, Skinner Jr J, Hare T (2005) Geologic map of the Northern Plains of Mars. Sci Invest Map 2888

    Google Scholar 

  96. De Pablo MA, Michael GG, Centeno JD (2013) Age and evolution of the lower NW flank of the Hecates Tholus volcano, Mars, based on crater size-frequency distribution on CTX images. Icarus 226(1):455–469

    Google Scholar 

  97. Werner SC (2009) The global Martian volcanic evolutionary history. Icarus 201:44–68

    Article  Google Scholar 

  98. Platz T, Michael G (2011) Eruption history of the Elysium Volcanic Province, Mars. Earth Planet Sci Lett [Internet] [cited 2018 Sep 23] 312(1–2):140–151. https://www.sciencedirect.com/science/article/pii/S0012821X11005887

  99. Tanaka KL, Robbins SJ, Fortezzo CM, Skinner JA, Hare TM (2014) The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planet Space Sci [Internet] [cited 2019 Mar 26] 95:11–24. https://www.sciencedirect.com/science/article/pii/S0032063313000652

  100. Williams DA, Greeley R, Fergason RL, Kuzmin R, McCord TB, Combe JP et al (2009) The Circum-Hellas volcanic province, Mars: overview. Planet Space Sci 57:895–916

    Article  Google Scholar 

  101. Ghatan GJ, Head JW III (2002) Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions. J Geophys Res–Planets. 107(E7):5048–5071

    Article  Google Scholar 

  102. Fenton LK, Hayward RK (2010) Southern high latitude dune fields on Mars: Morphology, Aeolian inactivity, and climate change. Geomorphology 121(1–2):98–121

    Google Scholar 

  103. Scott DH, Tanaka KL (1986) Geologic map of the western equatorial region of Mars [Internet]. IMAP 1802 [cited 2019 Apr 6]. https://pubs.er.usgs.gov/publication/i1802A

  104. Zimbelman JR, Garry WB, Bleacher JE, Crown DA (2015) Volcanism on Mars. In: The encyclopedia of volcanoes [Internet]. Academic Press [cited 2019 Jul 21], pp 717–728. https://www.sciencedirect.com/science/article/pii/B9780123859389000419

  105. Plescia JB (2000) Geology of the Uranius group volcanic constructs: Uranius Patera, Ceraunius Tholus, and Uranius Tholus. Icarus [Internet] [cited 2019 May 17] 143(2):376–396. https://www.sciencedirect.com/science/article/abs/pii/S0019103599962590

  106. Robbins SJ, Di Achille G, Hynek BM (2011) The volcanic history of Mars: high-resolution crater-based studies of the calderas of 20 volcanoes. Icarus

    Google Scholar 

  107. Xiao L, Huang J, Christensen PR, Greeley R, Williams DA, Zhao J et al (2012) Ancient volcanism and its implication for thermal evolution of Mars. Earth Planet Sci Lett [Internet] [cited 2019 May 26] 323–324:9–18. https://www.sciencedirect.com/science/article/pii/S0012821X12000453

  108. Tanaka KL, Scott DH (1987) Geologic map of the Polar Regions of Mars. USGS Miscellaneous Investigations Series Map I–1802–C

    Google Scholar 

  109. Greeley R, Foing BH, McSween HY, Neukum G, Pinet P, van Kan M et al (2005) Fluid lava flows in Gusev crater. Mars. J Geophys Res E Planets. 110:E05008

    Google Scholar 

  110. Cabrol NA, Grin EA, Carr MH, Sutter B, Moore JM, Farmer JD et al (2003) Exploring Gusev Crater with spirit: review of science objectives and testable hypotheses. J Geophys Res Planets [Internet] [cited 2019 Apr 5] 108(E12) http://doi.wiley.com/https://doi.org/10.1029/2002JE002026

  111. Stewart EM, Head JW (2001) Ancient Martian volcanoes in the Aeolis region: new evidence from MOLA data. J Geophys Res Planets [Internet] [cited 2019 May 17] 106(E8):17505–17513. https://doi.org/10.1029/2000JE001322

  112. Ackiss SE, Wray JJ (2014) Occurrences of possible hydrated sulfates in the southern high latitudes of Mars. Icarus 5(243):311–324

    Google Scholar 

  113. Head JW, Wilson L, Dickson J, Neukum G (2006) The Huygens-Hellas giant dike system on Mars: implications for late Noachian-early Hesperian volcanic resurfacing and climatic evolution. Geology 34 (4): 285–288

    Google Scholar 

  114. Mangold N (2012) Fluvial landforms on fresh impact ejecta on Mars. Planet Space Sci 62(1):69–85

    Google Scholar 

  115. Christensen PR (2006) Water at the poles and in permafrost regions of Mars. Elements [Internet] [cited 2019 Apr 5] 2(3):151–155. https://pubs.geoscienceworld.org/elements/article/2/3/151-155/137698

  116. Andrews-Hanna JC, Phillips RJ (2007) Hydrological modeling of outflow channels and chaos regions on Mars. J Geophys Res Planets [Internet] [cited 2019 Apr 5] 112(E8). http://doi.wiley.com/https://doi.org/10.1029/2006JE002881

  117. Leone G (2014) A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars. J Volcanol Geotherm Res 277:1–8

    Article  Google Scholar 

  118. Grant JA, Schultz PH (1990) Gradational epochs on Mars: Evidence from West-Northwest of Isidis Basin and Electris. Icarus 84(1):166–195

    Article  Google Scholar 

  119. Som SM, Montgomery DR, Greenberg HM (2009) Scaling relations for large Martian valleys. J Geophys Res [Internet] [cited 2019 Dec 7] 114(E2):E02005. http://doi.wiley.com/https://doi.org/10.1029/2008JE003132

  120. Maxwell TA, Craddock RA (1995) Age relations of Martian highland drainage basins. J Geophys Res 100( E6):11765– 11780

    Google Scholar 

  121. Fassett CI, Head JW (2008) Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198(1):37–56

    Google Scholar 

  122. Vaucher J, Baratoux D, Mangold N, Pinet P, Kurita K, Grégoire M (2009) The volcanic history of central Elysium Planitia: implications for Martian magmatism. Icarus 204(2):418–442

    Article  Google Scholar 

  123. Scott D, Tanaka K (1978) Geologic map of Mars [Internet]. Reston. https://pubs.er.usgs.gov/publication/i1083

  124. Kerber L, Head JW, Madeleine JB, Forget F, Wilson L (2011) The dispersal of pyroclasts from Apollinaris Patera, Mars: implications for the origin of the Medusae Fossae Formation. Icarus 216(1):212–220

    Google Scholar 

  125. Kerber L, Head JW, Madeleine J-B, Forget F, Wilson L (2012) The dispersal of pyroclasts from ancient explosive volcanoes on Mars: Implications for the friable layered deposits. Icarus [Internet] [cited 2019 Aug 13] 219(1):358–381. https://www.sciencedirect.com/science/article/pii/S0019103512001091

  126. Robinson MS, Mouginis-Mark PJ, Zimbelman JR, Wu SSC, Ablin KK, Howington-Kraus AE (1993) Chronology, eruption duration, and atmospheric contribution of the Martian volcano Apollinaris Patera. Icarus 104(2):301–323

    Google Scholar 

  127. Lang NP, McSween HY, Tornabene LL, Hardgrove CJ, Christensen PR (2010) Reexamining the relationship between Apollinaris Patera and the basalts of the Gusev crater plains, Mars. J Geophys Res [Internet] [cited 2018 Sep 22] 115(E4):E04006. http://doi.wiley.com/https://doi.org/10.1029/2009JE003397

  128. Capitan RD, Van De Wiel M (2011) Landform hierarchy and evolution in Gorgonum and Atlantis basins, Mars. Icarus 211(1):366-388

    Google Scholar 

  129. Öhman T, McGovern PJ (2014) Circumferential graben and the structural evolution of Alba Mons. Mars. Icarus 1(233):114–125

    Google Scholar 

  130. Keszthelyi L, Jaeger W, McEwen A, Tornabene L, Beyer RA, Dundas C et al (2008) High resolution imaging science experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars reconnaissance orbiter primary science phase. J Geophys Res E Planets 113:E04005

    Google Scholar 

  131. Spagnuolo MG, Figueredo PH, Ramos VA (2008) Reinterpretation of Tractus Fossae region as an asymmetric rift system on Mars. Icarus 198(2):318–330

    Google Scholar 

  132. Wilson L, Head JW (2002) Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. J Geophys Res E Planets. 107(8):1–1

    Google Scholar 

  133. Cailleau B, Walter TR, Janle P, Hauber E (2005) Unveiling the origin of radial grabens on Alba Patera volcano by finite element modelling. Icarus 176(1):44–56

    Google Scholar 

  134. Scott ED, Wilson L, Head JW (2002) Emplacement of giant radial dikes in the northern Tharsis region of Mars. J Geophys Res E Planets 25:107(4)

    Google Scholar 

  135. Ivanov MA, Head JW (2006) Alba Patera, Mars: topography, structure, and evolution of a unique late Hesperian-early Amazonian shield volcano. J Geophys Res E Planets. 111(E9):E09003

    Article  Google Scholar 

  136. Bleacher JE, Glaze LS, Greeley R, Hauber E, Baloga SM, Sakimoto SHE et al (2009) Spatial and alignment analyses for a field of small volcanic vents south of Pavonis Mons and implications for the Tharsis province, Mars. J Volcanol Geotherm Res 185(1-2):96-102

    Google Scholar 

  137. Richardson JA, Bleacher JE, Glaze LS (2013) The volcanic history of Syria Planum, Mars. J Volcanol Geotherm Res 252:1-13

    Google Scholar 

  138. Platz T, Michael G, Tanaka KL, Skinner JA, Fortezzo CM (2013) Crater-based dating of geological units on Mars: methods and application for the new global geological map. Icarus 225(1):806–827

    Google Scholar 

  139. Dohm JM, Tanaka KL, Hare TM (2001) Geologic Map of the Thaumasia Region, Mars [Internet] Reston [cited 2019 Dec 8]. https://pubs.usgs.gov/imap/i2650/

  140. Farrand WH, Glotch TD, Rice JW, Hurowitz JA, Swayze GA (2009) Discovery of Jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus 204(2):478–488

    Google Scholar 

  141. McKeown NK, Bishop JL, Noe Dobrea EZ, Ehlmann BL, Parente M, Mustard JF et al (2009) Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. J Geophys Res [Internet] [cited 2019 Dec 9] 114:E00D10. http://doi.wiley.com/https://doi.org/10.1029/2008JE003301

  142. Michalski JR, Bibring J-P, Poulet F, Loizeau D, Mangold N, Dobrea EN et al (2010) The Mawrth Vallis region of Mars: a potential landing site for the Mars Science Laboratory (MSL) mission. Astrobiology [Internet] [cited 2019 Dec 9] 10(7):687–703. http://www.liebertpub.com/doi/https://doi.org/10.1089/ast.2010.0491

  143. Loizeau D, Werner SC, Mangold N, Bibring JP, Vago JL (2012) Chronology of deposition and alteration in the Mawrth Vallis region, Mars. Planetary Space Science 72(1):31-43

    Google Scholar 

  144. Bishop JL, Loizeau D, McKeown NK, Saper L, Dyar MD, Des Marais DJ et al (2013) What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planet Space Sci 15(86):130–149

    Google Scholar 

  145. Ehlmann BL, Mustard JF, Murchie SL (2010) Geologic setting of serpentine deposits on Mars. Geophys Res Lett 37:L06201

    Article  Google Scholar 

  146. Madden MEE, Bodnar RJ, Rimstidt JD (2004) Jarosite as an indicator of water-limited chemical weathering on Mars. Nature 431:821–823

    Article  Google Scholar 

  147. Wilhelms DE (1974) Comparison of Martian and lunar geologic provinces. J Geophys Res [Internet] [cited 2018 Nov 19] 79(26):3933–3941. http://doi.wiley.com/https://doi.org/10.1029/JB079i026p03933

  148. Greeley R, Spudis PD (1978) Volcanism in the cratered terrain hemisphere of Mars. Geophys Res Lett [Internet] [cited 2018 Sep 23] 5(6):453–455. http://doi.wiley.com/https://doi.org/10.1029/GL005i006p00453

  149. Andrews-Hanna JC, Zuber MT, Arvidson RE, Wiseman SM (2010) Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J Geophys Res [Internet] [cited 2019 Dec 9] 115(E6):E06002. http://doi.wiley.com/https://doi.org/10.1029/2009JE003485

  150. Newsom HE, Lanza NL, Ollila AM, Wiseman SM, Roush TL, Marzo GA et al (2010) Inverted channel deposits on the floor of Miyamoto crater. Mars. Icarus. 205(1):64–72

    Google Scholar 

  151. Schultz PH, Glicken H (1979) Impact crater and basin control of igneous processes on Mars. J Geophys Res [Internet] [cited 2019 Aug 5] 84(B14):8033. http://doi.wiley.com/https://doi.org/10.1029/JB084iB14p08033

  152. Grant JA, Parker TJ (2002) Drainage evolution in the Margaritifer Sinus region. Mars. J Geophys Res E Planets. 107(9):4–1

    Google Scholar 

  153. Leverington DW (2006) Volcanic processes as alternative mechanisms of landform development at a candidate crater-lake site near Tyrrhena Patera, Mars. J Geophys Res E Planets. 111(E11):E11002

    Article  Google Scholar 

  154. Dietterich HR, Cashman KV (2014) Channel networks within lava flows: Formation, evolution, and implications for flow behavior. J Geophys Res Earth Surf 119:1704–1724

    Article  Google Scholar 

  155. Bouley S, Craddock RA, Mangold N, Ansan V (2010) Characterization of fluvial activity in Parana Valles using different age-dating techniques. Icarus 207(2):686–698

    Google Scholar 

  156. Oze C, Sharma M (2007) Serpentinization and the inorganic synthesis of H2in planetary surfaces. Icarus 186:557–561

    Article  Google Scholar 

  157. Stopar JD, Jeffrey Taylor G, Hamilton VE, Browning L (2006) Kinetic model of olivine dissolution and extent of aqueous alteration on mars. Geochim Cosmochim Acta 70:6136–6152

    Article  Google Scholar 

  158. Morgan GA, Head JW, Marchant DR (2011) Preservation of Late Amazonian Mars ice and water-related deposits in a unique crater environment in Noachis Terra: Age relationships between lobate debris tongues and gullies. Icarus 211(1):347–365

    Google Scholar 

  159. Condit C, Soderblom L (1978) Geologic map of the Mare Australe area of Mars [Internet]. Reston, VA. https://pubs.er.usgs.gov/publication/i1076

  160. Rogers AD, Bandfield JL (2009) Mineralogical characterization of Mars Science Laboratory candidate landing sites from THEMIS and TES data. Icarus 203(2):437–453

    Google Scholar 

  161. Malin MC, Edgett KS (2003) Evidence for persistent flow and aqueous sedimentation on early Mars. Science (80- )12, 302(5652):1931–1934

    Google Scholar 

  162. Pain CF, Clarke JDA, Thomas M (2007) Inversion of relief on Mars. Icarus 190(2):478–491

    Google Scholar 

  163. Buhler PB, Fassett CI, Head JW, Lamb MP (2011) Evidence for paleolakes in Erythraea Fossa, Mars: implications for an ancient hydrological cycle. Icarus [Internet] [cited 2019 Jul 7] 213(1):104–15. https://www.sciencedirect.com/science/article/pii/S0019103511000881

  164. Grant JA (2000) Valley formation in Margaritifer Sinus, Mars, by precipitation-recharged ground-water sapping. Geology 28(3):223–226

    Google Scholar 

  165. Hoke MRT, Hynek BM (2009) Roaming zones of precipitation on ancient Mars as recorded in valley networks. J Geophys Res Planets [Internet] [cited 2019 Dec 11] 114(E8):2008JE003247. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1029/2008JE003247

  166. Michalski JR, Bleacher JE (2013) Supervolcanoes within an ancient volcanic province in Arabia Terra. Mars. Nature. 502(7469):47–52

    Article  Google Scholar 

  167. Hiesinger H (2004) The Syrtis major volcanic province, Mars: synthesis from Mars global surveyor data. J Geophys Res 109:E01004

    Google Scholar 

  168. Christensen PR, McSween HY, Bandfield JL, Ruff SW, Rogers AD, Hamilton VE et al (2005) Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature 436(7050):504–509

    Article  Google Scholar 

  169. Wray JJ, Hansen ST, Dufek J, Swayze GA, Murchie SL, Seelos FP et al (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nat Geosci 6(12):1013–1017

    Article  Google Scholar 

  170. Hauber E, Bleacher J, Gwinner K, Williams D, Greeley R (2009) The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. J Volcanol Geotherm Res 185(1-2):69-95

    Google Scholar 

  171. Williams J-P, Dohm JM, Soare RJ, Flahaut J, Lopes RMC, Pathare AV et al (2017) Long-lived volcanism within Argyre basin, Mars. Icarus [Internet] [cited 2019 Aug 13] 293:8–26. https://www.sciencedirect.com/science/article/pii/S0019103516307254

  172. Robbins SJ, Hynek BM, Lillis RJ, Bottke WF (2013) Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus [Internet] [cited 2018 Oct 18] 225(1):173–184. https://www.sciencedirect.com/science/article/pii/S0019103513001358

  173. Hiesinger H, Head III JW (2002) Topography and morphology of the Argyre Basin, Mars: implications for its geologic and hydrologic history. Planet Space Sci [Internet] [cited 2019 Jul 7] 50(10–11):939–981. https://www.sciencedirect.com/science/article/pii/S0032063302000545

  174. Bernhardt H, Hiesinger H, Reiss D, Ivanov M, Erkeling G (2013) Putative eskers and new insights into glacio-fluvial depositional settings in southern Argyre Planitia, Mars. Planet Space Sci [Internet] [cited 2019 Jul 7] 85:261–278. https://www.sciencedirect.com/science/article/pii/S0032063313001633

  175. Carr M, Evans N (1980) Images of Mars: the Viking extended mission [Internet] [cited 2019 Dec 13]. https://ui.adsabs.harvard.edu/abs/1980NASSP.444.....C/abstract

  176. Kargel JS, Strom RG (1992) Ancient glaciation on Mars. Geology 20(1):3–7

    Article  Google Scholar 

  177. Banks ME, Lang NP, Kargel JS, McEwen AS, Baker VR, Grant JA et al (2009) An analysis of sinuous ridges in the southern Argyre Planitia, Mars using HiRISE and CTX images and MOLA data. J Geophys Res [Internet] [cited 2019 Jul 7] 114(E9):E09003. http://doi.wiley.com/https://doi.org/10.1029/2008JE003244

  178. Poulet F, Gomez C, Bibring J-P, Langevin Y, Gondet B, Pinet P et al (2007) Martian surface mineralogy from Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. J Geophys Res Planets [Internet] [cited 2020 Jan 11] 112(E8). http://doi.wiley.com/https://doi.org/10.1029/2006JE002840

  179. Coffin MF, Eldholm O (1992) Volcanism and continental break-up: a global compilation of large igneous provinces. Geol Soc Spec Publ 68:17–30

    Article  Google Scholar 

  180. Kerber L, Head JW (2010) The age of the Medusae Fossae Formation: evidence of Hesperian emplacement from crater morphology, stratigraphy, and ancient lava contacts. Icarus 206(2):669–684

    Google Scholar 

  181. Harrison SK, Balme MR, Hagermann A, Murray JB, Muller JP (2010) Mapping Medusae Fossae formation materials in the southern highlands of Mars. Icarus 209(2):405–415

    Article  Google Scholar 

  182. Scott DH, Tanaka KL (1982) Ignimbrites of Amazonis Planitia region of Mars. J Geophys Res Solid Earth [Internet] [cited 2019 Aug 8] 87(B2):1179–1190. http://doi.wiley.com/https://doi.org/10.1029/JB087iB02p01179

  183. Scott DH (1982) Volcanoes and volcanic provinces: Martian western hemisphere. J Geophys Res [Internet] [cited 2019 Jul 27] 87(B12):9839. http://doi.wiley.com/https://doi.org/10.1029/JB087iB12p09839

  184. Plescia JB (1981) The Tempe volcanic province of Mars and comparisons with the Snake River Plains of Idaho. Icarus [Internet] [cited 2018 Nov 6] 45(3):586–601. https://www.sciencedirect.com/science/article/pii/0019103581900245

  185. Hiesinger H, Head JW (2004) The Syrtis major volcanic province, Mars: synthesis from mars global surveyor data. J Geophys Res E Planets. 109(1):E01004

    Google Scholar 

  186. Schaber GG, Horstman KC, Dial AL (1978) Lava flow materials in the Tharsis region of Mars. In: Lunar and planetary science conference, 9th [Internet]. Houston, Tex., March 13–17, 1978: New York, Pergamon Press, Inc [cited 2020 Jan 16], pp 3433–3458. https://ui.adsabs.harvard.edu/abs/1978LPSC....9.3433S/abstract

  187. Hall JL, Solomon SC, Head JW (1986) Elysium Region, Mars: Tests of lithospheric loading models for the formation of tectonic features. J Geophys Res 91(B11):11377

    Article  Google Scholar 

  188. Kerber L, Forget F, Madeleine J-B, Wordsworth R, Head JW, Wilson L (2013) The effect of atmospheric pressure on the dispersal of Pyroclasts from Martian volcanoes. Icarus [Internet] [cited 2018 Sep 22] 223(1):149–156. https://www.sciencedirect.com/science/article/pii/S0019103512004915

  189. Tanaka KL, Fortezzo CM, Hayward RK, Rodriguez JAP, Skinner JA (2011) History of plains resurfacing in the Scandia region of Mars. Planet Space Sci 59(11–12):1128–1142

    Article  Google Scholar 

  190. Acuña MH (2003) The magnetic field of Mars. Lead Edge (Tulsa, OK). 22(8):769–771

    Article  Google Scholar 

  191. Langlais B, Thébault E, Houliez A, Purucker ME, Lillis RJ (2019) A new model of the crustal magnetic field of mars using MGS and MAVEN. J Geophys Res Planets [Internet] [cited 2019 Aug 19] 124(6):2018JE005854. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1029/2018JE005854

  192. Langlais B, Lesur V, Purucker ME, Connerney JEP, Mandea M (2010) Crustal magnetic fields of terrestrial planets. Space Sci Rev 152(1–4):223–249

    Google Scholar 

  193. Connerney JEP, Acuña MH, Ness NF, Kletetschka G, Mitchell DL, Lin RP et al (2005) Tectonic implications of Mars crustal magnetism. Proc Natl Acad Sci 102(42):14970–14975

    Article  Google Scholar 

  194. Hood LL, Harrison KP, Langlais B, Lillis RJ, Poulet F, Williams DA (2010) Magnetic anomalies near Apollinaris Patera and the Medusae Fossae Formation in Lucus Planum, Mars. Icarus 208(1):118-131

    Google Scholar 

  195. Weiss BP, Vali H, Baudenbacher FJ, Kirschvink JL, Stewart ST, Shuster DL (2002) Records of an ancient Martian magnetic field in ALH84001. Earth Planet Sci Lett [Internet] [cited 2019 Aug 9], 201(3–4):449–463. https://www.sciencedirect.com/science/article/pii/S0012821X02007288

  196. Riedler W, Möhlmann D, Oraevsky VN, Schwingenschuh K, Yeroshenko Y, Rustenbach J et al (1989) Magnetic fields near Mars: first results. Nature 341(6243):604–607

    Article  Google Scholar 

  197. Connerney JEP, Acuña MH, Wasilewski PJ, Kletetschka G, Ness NF, Rème H et al (2001) The global magnetic field of Mars and implications for crustal evolution. Geophys Res Lett [Internet] [cited 2020 Mar 3] 28(21):4015–4018. http://doi.wiley.com/https://doi.org/10.1029/2001GL013619

  198. Schubert G, Russell CT, Moore WB (2000) Timing of the Martian dynamo. Nature 408(6813):666–667

    Google Scholar 

  199. Acuña MH, Connerney JEP, Ness NF, Lin RP, Mitchell D, Carlson CW et al (1999) Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science (80- )284(5415):790–793.

    Google Scholar 

  200. Williams JP, Nimmo F (2004) Thermal evolution of the Martian core: Implications for an early dynamo. Geology 32(2):97–100

    Article  Google Scholar 

  201. Milbury C, Schubert G, Raymond CA, Smrekar SE, Langlais B (2012) The history of Mars’ dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major. J Geophys Res Planets [Internet] [cited 2019 Aug 24] 117(E10). http://doi.wiley.com/https://doi.org/10.1029/2012JE004099

  202. Stevenson DJ (2001) Mars’ core and magnetism. Nature [Internet] [cited 2019 Aug 9] 412(6843):214–219. http://www.nature.com/articles/35084155

  203. Monteux J, Amit H, Choblet G, Langlais B, Tobie G (2015) Giant impacts, heterogeneous mantle heating and a past hemispheric dynamo on Mars. Phys Earth Planet Inter [Internet] [cited 2019 Aug 14] 240:114–24. https://www.sciencedirect.com/science/article/pii/S0031920114002532

  204. Roberts JH, Lillis RJ, Manga M (2009) Giant impacts on early Mars and the cessation of the Martian dynamo. J Geophys Res [Internet] [cited 2020 Jan 18] 114(E4):E04009. http://doi.wiley.com/https://doi.org/10.1029/2008JE003287

  205. Fanale FP, Jakosky BM (1982) Regolith-atmosphere exchange of water and carbon dioxide on Mars: effects on atmospheric history and climate change. Planet Space Sci 30(8):819–831

    Article  Google Scholar 

  206. Fanale FP, Salvail JR, Zent AP, Postawko SE (1986) Global distribution and migration of subsurface ice on mars. Icarus 67(1):1–18

    Article  Google Scholar 

  207. Gulick VC, Baker VR (1989) Fluvial valleys and martian palaeoclimates. Nature [Internet] [cited 2019 May 26] 341(6242):514–516. http://www.nature.com/articles/341514a0

  208. Wordsworth RD, Kerber L, Pierrehumbert RT, Forget F, Head JW (2015) Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J Geophys Res Planets [Internet] [cited 2019 Apr 5] 120(6):1201–1219. http://doi.wiley.com/https://doi.org/10.1002/2015JE004787

  209. Pollack JB, Kasting JF, Richardson SM, Poliakoff K (1987) The case for a wet, warm climate on early Mars. Icarus 71(2):203–224

    Google Scholar 

  210. Craddock RA, Howard AD (2002) The case for rainfall on a warm, wet early Mars. J Geophys Res E Planets [Internet] [cited 2020 Mar 4] 107(11):21-1–21-36. http://doi.wiley.com/https://doi.org/10.1029/2001JE001505

  211. Squyres SW, Kasting JF (1994) Early Mars: how warm and how wet? Science 265:744–749. American Association for the Advancement of Science

    Google Scholar 

  212. Haberle RM (1998) Early Mars climate models. J Geophys Res Planets [Internet] [cited 2020 Feb 10] 103(E12):28467–28479. http://doi.wiley.com/https://doi.org/10.1029/98JE01396

  213. Gaidos E, Marion G (2003) Geological and geochemical legacy of a cold early Mars. J Geophys Res E Planets. 108(6):9–1

    Google Scholar 

  214. Fairén AG (2010) A cold and wet Mars. Icarus 208(1):165–175

    Google Scholar 

  215. Wilson L, Head JW (1994) Mars: Review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys [Internet] [cited 2018 Sep 22] 32(3):221. http://doi.wiley.com/https://doi.org/10.1029/94RG01113

  216. Mouginis-Mark PJ (2002) Prodigious ash deposits near the summit of Arsia Mons volcano, Mars. Geophys Res Lett [Internet] [cited 2019 Apr 5] 29(16):15-1–15-4. http://doi.wiley.com/https://doi.org/10.1029/2002GL015296

  217. Mouginis-Mark PJ, Wilson L, Head JW (2018) Explosive volcanism on Hecates Tholus, Mars: investigation of eruption conditions. J Geophys Res [Internet] [cited 2018 Nov 6] 87(B12):9890–904. http://doi.wiley.com/https://doi.org/10.1029/JB087iB12p09890

  218. Brož P, Hauber E (2012) A unique volcanic field in Tharsis, Mars: Pyroclastic cones as evidence for explosive eruptions. Icarus [Internet] [cited 2018 Nov 6] 218(1):88–99. https://www.sciencedirect.com/science/article/pii/S001910351100457X

  219. Brož P, Hauber E (2013) Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars. J Geophys Res Planets [cited 2019 Jul 22], 118(8):1656–75. http://doi.wiley.com/https://doi.org/10.1002/jgre.20120

  220. Reimers CE, Komar PD (1979) Evidence for explosive volcanic density currents on certain Martian volcanoes. Icarus [Internet] [cited 2018 Sep 22] 39(1):88–110. https://www.sciencedirect.com/science/article/pii/0019103579901039

  221. Lamb HH (1970) Volcanic, dust in, the atmosphere, with a chronology and assessment of its meteorological significance. Phil Trans Roy Soc London Ser A Math Phys Sci. 266(1178):425–533

    Google Scholar 

  222. Pueschel RF, Garcia CJ, Hansen RT, Pueschel RF, Garcia CJ, Hansen RT (1974) Solar radiation: effects of atmospheric water vapor and volcanic aerosols. Journal of Applied Meteorology and Climatology 13(3):397-401

    Google Scholar 

  223. Santer BD, Bonfils C, Painter JF, Zelinka MD, Mears C, Solomon S et al (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci 7(3):185–189

    Google Scholar 

  224. Wilson L, Mouginis-Mark PJ (1987) Volcanic input to the atmosphere from Alba Patera on Mars. Nature 330(6146):354–357

    Article  Google Scholar 

  225. Mustard JF, Cooper CD, Rifkin MK (2001) Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412(6845):411–414

    Google Scholar 

  226. Nerozzi S, Holt JW (2020) Buried ice and sand caps at the North pole of Mars: revealing a record of climate change in the Cavi unit with SHARAD. Geophys Res Lett [Internet] [cited 2020 Mar 3] 46(13):7278–7286. https://doi.org/10.1029/2019GL082114

  227. Laskar J, Correia ACM, Gastineau M, Joutel F, Levrard B, Robutel P (2004) Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170(2):343-364

    Google Scholar 

  228. Kite ES (2019) Geologic constraints on early mars climate. Space Sci Rev 215:10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Leone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leone, G. (2021). The Formation of Mars and the Origin of Its Volcanic Provinces. In: Leone, G. (eds) Mars: A Volcanic World. Springer, Cham. https://doi.org/10.1007/978-3-030-84103-4_2

Download citation

Publish with us

Policies and ethics