Skip to main content

Potential Futures in Human Habitation of Martian Lava Tubes

Abstract

Lava tubes exists as volcanic features not only on Earth, but even on other worlds. Lava tubes are the most practical and effective places where to install the first human bases on Mars. We review the human to Mars architectures currently being developed, subsequently we describe a context for the use of lava tubes for human habitation. The architecture for the use of in-situ resources as fuel for a return rocket, the use of a landing vehicle as the initial habitat are discussed. Also, the core landing site selection criteria are discussed, including how the access to a lava tube might change the landing approach. Additionally, the challenges to constructing a larger scale habitat for a growing population necessary to achieve a permanent base and the possible solutions are proposed. Whether lava tubes are present on the Martian surface, the shielding effect that they can provide is exceptionally advantageous in both logistical and economical terms for a planetary mission, since they do not require a huge mass load to be brought on a space mission and minimize considerably the work to be done on the dangerous Martian surface after landing—however, habitats on the surface still need to be considered where lava tubes are absent. Lava tubes can naturally protect from deadly radiations, extreme temperature variations, dust storms, and micrometeorite impacts. Thermal mining inside lava tubes is proposed as a realistic way to extract water ice from below the surface and use it for living purposes. Robots and humans should work together in order to detect and access the best lava tube close to the selected landing site. Lava tubes on Earth or the Moon can result in a great opportunity for conducting analog Martian missions.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-84103-4_11
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-84103-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.00
Price excludes VAT (USA)
Fig. 1

Courtesy of NASA

Fig. 2

Image credits OeWF/Voggeneder

Fig. 3
Fig. 4
Fig. 5

Courtesy of HiRISE/NASA-JPL/University of Arizona

Fig. 6

Courtesy of USGS—Astrogeology Science Center

Fig. 7

Courtesy of DARPA

Fig. 8

Courtesy of XArc

Fig. 9

Image credits Emilia Rosselli Del Turco and Irene Zaccara

Fig. 10

Courtesy of XArc

Fig. 11

Courtesy of NASA/GSFC/Arizona State University

References

  1. NASA (2020) Artemis Plan—NASA’s Lunar Exploration Program Overview [WWW Document] [Internet]. https://www.nasa.gov/sites/default/files/atoms/files/artemis_plan-20200921.pdf

  2. Foust J (2019) Gateway or bust: NASA’s plan for a 2024 lunar landing depends on a much-criticized orbital outpost. IEEE Spectr 56(7):32–37

    CrossRef  Google Scholar 

  3. Murtazin R, Sevastiyanov N, Chudinov N (2020) Fast rendezvous profile evolution: from ISS to lunar station. Acta Astronaut 173:139–144

    CrossRef  Google Scholar 

  4. Burns JO, Mellinkoff B, Spydell M, Fong T, Kring DA, Pratt WD et al (2019) Science on the lunar surface facilitated by low latency telerobotics from a Lunar Orbital Platform—gateway. Acta Astronaut 154:195–203

    CrossRef  Google Scholar 

  5. Drake BG, Hoffman SJ, Beaty DW (2010) Human exploration of Mars, Design Reference Architecture 5.0. In: 2010 IEEE aerospace conference [Internet]. IEEE, pp 1–24. http://ieeexplore.ieee.org/document/5446736/

  6. Drake BG (2009) Human exploration of Mars Design Reference Architecture 5.0 (No. NASA/SP–2009–566). Human exploration of Mars Design Reference Architecture. NASA, Houston, TX

    Google Scholar 

  7. Rudisill M, Howard R, Griffin B, Green J, Toups L, Kennedy K (2008) Lunar architecture team: phase 2 habitat volume estimation: “‘caution when using analogs.’” In: Earth & space [Internet]. American Society of Civil Engineers, Reston, VA, pp 1–11. http://ascelibrary.org/doi/10.1061/40988%28323%29101

  8. Leidner D, Music S, Wedler A (2015) Robotic deployment of extraterrestrial seismic networks. In: 13th symposium on Advanced Space Technologies in Robotics and Automation (ASTRA)

    Google Scholar 

  9. Abercromby AFJ, Chappell SP, Gernhardt ML (2013) Desert RATS 2011: human and robotic exploration of near-Earth asteroids. Acta Astronaut [Internet] 91:34–48. https://linkinghub.elsevier.com/retrieve/pii/S0094576513001525

  10. Binsted K, Hunter J, Halpern B, Caldwell B (2013) HI-SEAS: a long-duration human spaceflight analog in Hawaii. In: 64th International Astronautical Congress

    Google Scholar 

  11. Häuplik-Meusburger S, Binsted K, Bassingthwaighte T, Petrov G (2017) Habitability studies and full scale simulation research: preliminary themes following HISEAS mission IV. In: 47th international conference on environmental systems

    Google Scholar 

  12. Lim DSS, Abercromby AFJ, Kobs Nawotniak SE, Lees DS, Miller MJ, Brady AL et al (2019) The BASALT research program: designing and developing mission elements in support of human scientific exploration of Mars. Astrobiology [Internet] 19(3):245–259. https://www.liebertpub.com/doi/10.1089/ast.2018.1869

  13. Imhof B, Hogle M, Davenport B, Weiss P, Urbina D, Røyrvik J, Vögele T, Parro V, Nottle A (2017) Project moonwalk: lessons learnt from testing human robot collaboration scenarios in a lunar and Martian simulation. In: 69th International Astronautical Congress (IAC)

    Google Scholar 

  14. Imhof B, Hoheneder W, Ransom S, Waclavicek R, Davenport B, Weiss P et al (2015) Moonwalk—human robot collaboration mission scenarios and simulations. In: AIAA SPACE 2015 conference and exposition [Internet]. American Institute of Aeronautics and Astronautics, Reston, Virginia. http://arc.aiaa.org/doi/10.2514/6.2015-4531

  15. Bessone L, Sauro F, Stevenin H (2015) Training safe and effective spaceflight operations using terrestrial analogues. In: Space safety is no accident [Internet]. Springer International Publishing, Cham, pp 313–318. http://link.springer.com/10.1007/978-3-319-15982-9_37

  16. Bessone L, Sauro F, Maurer M, Piens M (2018) Testing technologies and operational concepts for field geology exploration of the Moon and beyond: the ESA PANGAEA-X campaign. EGU Gen Assem 2018

    Google Scholar 

  17. Groemer G, Gruber S, Uebermasser S, Soucek A, Lalla EA, Lousada J et al (2020) The AMADEE-18 Mars analog expedition in the Dhofar Region of Oman. Astrobiology [Internet] 20(11):1276–1286. https://www.liebertpub.com/doi/10.1089/ast.2019.2031

  18. Groemer G, Soucek A, Frischauf N, Stumptner W, Ragonig C, Sams S et al (2014) The MARS2013 Mars analog mission. Astrobiology [Internet] 14(5):360–376. http://www.liebertpub.com/doi/10.1089/ast.2013.1062

  19. Willson D et al (2005) MARS-OZ: a design for a simulated Mars base in the Australian Outback. JBIS—J Br Interplanet Soc 58(9–10):282–293

    Google Scholar 

  20. Hargitai HI, Gregory HS, Osburg J, Hands D (2007) Development of a local toponym system at the Mars Desert Research Station. Cartogr Int J Geogr Inf Geovisualizat 42(2):179–187

    Google Scholar 

  21. Doule O (2015) Systems architecture complexity in definition of human spaceflight simulators, analogs and human spaceflight design process dependent on mission goals and strategy. In: AIAA SPACE 2015 conference and exposition [Internet]. American Institute of Aeronautics and Astronautics, Reston, Virginia. http://arc.aiaa.org/doi/10.2514/6.2015-4400

  22. Ash R, Dowler W, Varsi G (1978) Feasibility of rocket propellant production on Mars. Acta Astronaut [Internet] 5(9):705–724. https://linkinghub.elsevier.com/retrieve/pii/0094576578900498

  23. Sanders GB, Paz A, Oryshchyn L, Araghi K, Muscatello A, Linne DL et al (2015) Mars ISRU for production of mission critical consumables—options, recent studies, and current state of the art. In: AIAA SPACE 2015 conference and exposition [Internet]. American Institute of Aeronautics and Astronautics, Reston, Virginia. http://arc.aiaa.org/doi/10.2514/6.2015-4458

  24. Zubrin RM, Muscatello AC, Berggren M (2013) Integrated Mars in situ propellant production system. J Aerosp Eng 26(1):43–56

    CrossRef  Google Scholar 

  25. Gayen P, Sankarasubramanian S, Ramani VK (2020) Fuel and oxygen harvesting from Martian regolithic brine. Proc Natl Acad Sci 117(50):31685-31689

    Google Scholar 

  26. Berg JIAHH (2019) Experimental configuration and preliminary results of testing a rapid cycle adsorption pump for Martian CO2 acquisition. NASA Tech Rep 1–13

    Google Scholar 

  27. Brooks KP, Hu J, Zhu H, Kee RJ (2007) Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem Eng Sci 62(4):1161–1170

    CrossRef  Google Scholar 

  28. Jürgensen L, Ehimen EA, Born J, Holm-Nielsen JB (2015) Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation. Bioresour Technol 178:323–329

    CrossRef  Google Scholar 

  29. El Sibai A, Rihko-Struckmann L, Sundmacher K (2015) Synthetic methane from CO2: dynamic optimization of the Sabatier process for power-to-gas applications. In: Computer aided chemical engineering. Elsevier B.V., pp 1157–1162

    Google Scholar 

  30. Muscatello A et al (2005) Integrated Mars in-situ propellant production system. In: Space resources roundtable VII (2005)

    Google Scholar 

  31. Li S, Jiang X (2014) Review and prospect of guidance and control for Mars atmospheric entry, vol 69, Progress in aerospace sciences. Elsevier Ltd, pp 40–57

    Google Scholar 

  32. Fratini E, Amendola R (2014) Caves and other subsurface environments in the future exploration of Mars: the absence of natural background radiation as biology concern. Rend Lincei [Internet] 25(S1):91–96. http://link.springer.com/10.1007/s12210-013-0270-0

  33. Golombek MP, Cook RA, Moore HJ, Parker TJ (1997) Selection of the Mars pathfinder landing site. J Geophys Res Planets 102(E2):3967–3988

    CrossRef  Google Scholar 

  34. Grant JA, Golombek MP, Grotzinger JP, Wilson SA, Watkins MM, Vasavada AR et al (2011) The science process for selecting the landing site for the 2011 mars science laboratory. In: Planetary and space science. Pergamon, pp 1114–1127

    Google Scholar 

  35. Grant JA, Golombek MP, Wilson SA, Farley KA, Williford KH, Chen A (2018) The science process for selecting the landing site for the 2020 Mars rover. Planet Space Sci [Internet] 164:106–126. https://linkinghub.elsevier.com/retrieve/pii/S0032063318301077

  36. Fritts DC, Wang L, Tolson RH (2006) Mean and gravity wave structures and variability in the Mars upper atmosphere inferred from Mars Global Surveyor and Mars Odyssey aerobraking densities. J Geophys Res 111(A12):A12304

    CrossRef  Google Scholar 

  37. McCleese DJ, Heavens NG, Schofield JT, Abdou WA, Bandfield JL, Calcutt SB et al (2010) Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols. J Geophys Res E Planets 115(12):E12016

    Google Scholar 

  38. Djachkova MV, Litvak ML, Mitrofanov IG, Sanin AB (2017) Selection of Luna-25 landing sites in the South Polar Region of the Moon. Sol Syst Res 51(3):185–195

    CrossRef  Google Scholar 

  39. De Rosa D, Bussey B, Cahill JT, Lutz T, Crawford IA, Hackwill T et al (2012) Characterisation of potential landing sites for the European Space Agency’s Lunar Lander project. In: Planetary and space science

    Google Scholar 

  40. Jung J, Yi Y, Kim E (2014) Identification of Martian cave skylights using the temperature change during day and night. J Astron Sp Sci [Internet] 31(2):141–144. http://koreascience.or.kr/journal/view.jsp?kj=OJOOBS&py=2014&vnc=v31n2&sp=141

  41. Leone G (2014) A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars. J Volcanol Geotherm Res 277:1-8

    Google Scholar 

  42. Leone G (2016) Alignments of volcanic features in the southern hemisphere of Mars produced by migrating mantle plumes. J Volcanol Geotherm Res 309:78–95

    CrossRef  Google Scholar 

  43. Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE, Grant JA et al (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature [Internet] 454(7202):305–309. http://www.nature.com/articles/nature07097

  44. Kim MHY, De Angelis G, Cucinotta FA (2011) Probabilistic assessment of radiation risk for astronauts in space missions. Acta Astronaut 68(7–8):747–759

    CrossRef  Google Scholar 

  45. Elgart SR, Little MP, Chappell LJ, Milder CM, Shavers MR, Huff JL et al (2018) Radiation exposure and mortality from cardiovascular disease and cancer in early NASA astronauts. Sci Rep 8(1):8480

    Google Scholar 

  46. Chancellor J, Scott G, Sutton J (2014) Space radiation: the number one risk to astronaut health beyond low earth orbit. Life 4(3): 491-510. https://doi.org/10.3390/life4030491

  47. Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, Ehresmann B, Rafkin S, Eigenbrode JL et al (2014) Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover. Science (80-) [Internet] 343(6169):1244797. https://www.sciencemag.org/lookup/doi/10.1126/science.1244797

  48. National Research Council (2008) Managing space radiation risk in the new era of space exploration [Internet]. National Academies Press, Washington, DC. http://www.nap.edu/catalog/12045

  49. Wilson JW, Anderson BM, Cucinotta FA, Ware J, Zeitlin CJ (2006) Spacesuit radiation shield design methods. In: 36th international conference on environmental systems, pp 277–293

    Google Scholar 

  50. Valentin J (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP. Elsevier, Oxford

    Google Scholar 

  51. Gaier JR (2005) The effects of lunar dust on EVA systems during the Apollo missions (No. NASA/TM—2005-213610). NASA, Cleveland, Ohio

    Google Scholar 

  52. Levine JS, Winterhalter D, Kerschmann RL (2018) Dust in the atmosphere of Mars and its impact on human exploration. Cambridge Scholars Publishing, 293 pp

    Google Scholar 

  53. NASA/JPL-Caltech (2018) PIA22737: Mars climate sounder studies 2018 dust storm [WWW Document] [Internet]. https://photojournal.jpl.nasa.gov/catalog/PIA22737

  54. Rucker MA (2017) Dust storm impacts on human Mars mission equipment and operations. In: Dust in the atmosphere of Mars and its impact on human exploration workshop

    Google Scholar 

  55. Sim PA (2017) Martian dust and its interaction with human physiology: an emergency physician’s perspective. In: Dust in the atmosphere of Mars and its impact on human exploration workshop

    Google Scholar 

  56. Sonter MJ (1997) The technical and economic feasibility of mining the near-earth asteroids. Acta Astronaut [Internet] 41(4–10):637–647. https://linkinghub.elsevier.com/retrieve/pii/S0094576598000873

  57. Leone G (2020) The absence of an ocean and the fate of water all over the Martian history. Earth Sp Sci 7(4):e2019EA001031

    Google Scholar 

  58. Wilson L, Head JW (1994) Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys [Internet] 32(3):221. http://doi.wiley.com/10.1029/94RG01113

  59. Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bull Volcanol [Internet] 56(5):343–360. http://link.springer.com/10.1007/BF00326461

  60. Valerio A, Tallarico A, Dragoni M (2008) Mechanisms of formation of lava tubes. J Geophys Res Solid Earth [Internet] 113(B8). http://doi.wiley.com/10.1029/2007JB005435

  61. Greeley R (1971) Lava tubes and channels in the lunar Marius Hills. Moon 3(3):289–314

    CrossRef  Google Scholar 

  62. Léveillé RJ, Datta S (2010) Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Planet Space Sci 58(4):592–598

    CrossRef  Google Scholar 

  63. Sauro F, Pozzobon R, Massironi M, De Berardinis P, Santagata T, De Waele J (2020) Lava tubes on Earth, Moon and Mars: a review on their size and morphology revealed by comparative planetology. Earth-Science Rev [Internet] 209(July):103288. https://doi.org/10.1016/j.earscirev.2020.103288

  64. López-Martínez R, Barragán R, Beraldi-Campesi H, Lánczos T, Vidal-Romaní J, Aubrecht R et al (2016) Morphological and mineralogical characterization of speleothems from the Chimalacatepec lava tube system, Central Mexico. Int J Speleol [Internet] 45(2):111–122. http://scholarcommons.usf.edu/ijs/vol45/iss2/2/

  65. Theinat AK, Modiriasari A, Bobet A, Melosh HJ, Dyke SJ, Ramirez J et al (2020) Lunar lava tubes: morphology to structural stability. Icarus [Internet] 338:113442. https://doi.org/10.1016/j.icarus.2019.113442

  66. Atkinson A, Griffin TJ, Stephenson PJ (1975) A major lava tube system from Undara Volcano, North Queensland. Bull Volcanol [Internet] 39(2):266–293. http://link.springer.com/10.1007/BF02597832

  67. Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DS, Kleina LG et al (2001) Cave biosignature suites: microbes, minerals, and mars. Astrobiology [Internet] 1(1):25–55. http://www.liebertpub.com/doi/10.1089/153110701750137413

  68. McEwen AS, Eliason EM, Bergstrom JW, Bridges NT, Hansen CJ, Delamere WA et al (2007) Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J Geophys Res [Internet] 112(E5):E05S02. http://doi.wiley.com/10.1029/2005JE002605

  69. Malin MC, Bell JF, Cantor BA, Caplinger MA, Calvin WM, Clancy RT et al (2007) Context camera investigation on board the Mars Reconnaissance Orbiter. J Geophys Res [Internet] 112(E5):E05S04. http://doi.wiley.com/10.1029/2006JE002808

  70. Leone G (2017) Mangala Valles, Mars: a reassessment of formation processes based on a new geomorphological and stratigraphic analysis of the geological units. J Volcanol Geotherm Res 337:62–80

    CrossRef  Google Scholar 

  71. Cushing GE (2017) U. SGSu. Mars Global Cave Candidate Catalog (MGC3). Astrobiol Sci Conf 2017 2017(1965):86001

    Google Scholar 

  72. Fairén AG, Dohm JM, Uceda ER, Rodríguez AP, Baker VR, Fernández-Remolar D et al (2005) Prime candidate sites for astrobiological exploration through the hydrogeological history of Mars. Planet Space Sci 53(13):1355–1375

    CrossRef  Google Scholar 

  73. Leovy CE, Zurek RW, Pollack JB (1973) Mechanisms for Mars dust storms. J Atmos Sci [Internet] 30(5):749–762. http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281973%29030%3C0749%3AMFMDS%3E2.0.CO%3B2

  74. Wilson AP, Genge MJ, Krzesińska AM, Tomkins AG (2019) Atmospheric entry heating of micrometeorites at Earth and Mars: implications for the survival of organics. Meteorit Planet Sci [Internet] 54(9):1–19. https://onlinelibrary.wiley.com/doi/abs/10.1111/maps.13360

  75. Williams KE, McKay CP, Toon OB, Head JW (2010) Do ice caves exist on Mars? Icarus [Internet] 209(2):358–368. https://linkinghub.elsevier.com/retrieve/pii/S0019103510001491

  76. Lee P (2020) Ice-rich caves on the Moon and Mars: prospects and pragmatic recommendations for exploration. 3rd Int Planet Caves Conf 2197(2197):1066

    Google Scholar 

  77. Spanovich N, Smith MD, Smith PH, Wolff MJ, Christensen PR, Squyres SW (2006) Surface and near-surface atmospheric temperatures for the Mars Exploration Rover landing sites. Icarus [Internet] 180(2):314–320. https://linkinghub.elsevier.com/retrieve/pii/S0019103505003313

  78. Banfield D, Spiga A, Newman C, Forget F, Lemmon M, Lorenz R et al (2020) The atmosphere of Mars as observed by InSight. Nat Geosci [Internet] 13(3):190–198. http://www.nature.com/articles/s41561-020-0534-0

  79. Schörghofer N, Businger S, Leopold M (2018) The coldest places in Hawaii: the ice-preserving microclimates of high-altitude craters and caves on tropical island volcanoes. Bull Am Meteorol Soc [Internet] 99(11):2313–2324. https://journals.ametsoc.org/bams/article/99/11/2313/70246/The-Coldest-Places-in-Hawaii-The-IcePreserving

  80. Richardson MI, Wilson RJ, Rodin AV (2002) Water ice clouds in the Martian atmosphere: General circulation model experiments with a simple cloud scheme. J Geophys Res E Planets 107(9):1–29

    Google Scholar 

  81. Benson JL, James PB, Cantor BA, Remigio R (2006) Interannual variability of water ice clouds over major martian volcanoes observed by MOC. Icarus 184(2):365–371

    CrossRef  Google Scholar 

  82. De Angelis G, Wilson JW, Clowdsley MS, Nealy JE, Humes DH, Clem JM (2002) Lunar lava tube radiation safety analysis. J Radiat Res 43(Suppl):41–45

    CrossRef  Google Scholar 

  83. Mari N, Riches AJV, Hallis LJ, Marrocchi Y, Villeneuve J, Gleissner P et al (2019) Syneruptive incorporation of martian surface sulphur in the nakhlite lava flows revealed by S and Os isotopes and highly siderophile elements: implication for mantle sources in Mars. Geochim Cosmochim Acta 266:416-434

    Google Scholar 

  84. Perkins S (2020) Core concept: lava tubes may be havens for ancient alien life and future human explorers. Proc Natl Acad Sci [Internet] 117(30):17461–17464. http://www.pnas.org/lookup/doi/10.1073/pnas.2012176117

  85. von Ehrenfried M (2019) “Dutch.” Terrestrial cave and lava tube research. In: From cave man to cave Martian [Internet]. Springer International Publishing, Cham, pp 49–81. http://link.springer.com/10.1007/978-3-030-05408-3_4

  86. Maltagliati L, Titov DV, Encrenaz T, Melchiorri R, Forget F, Garcia-Comas M et al (2008) Observations of atmospheric water vapor above the Tharsis volcanoes on Mars with the OMEGA/MEx imaging spectrometer. Icarus 194(1):53–64

    CrossRef  Google Scholar 

  87. Moudden Y, Forbes JM (2009) Mars W cloud: evidence of nighttime ice depositions. Geophys Res Lett 36(14):1–5

    CrossRef  Google Scholar 

  88. Sowers GF, Dreyer CB (2019) Ice mining in lunar permanently shadowed regions. New Sp 7(4):235–244

    CrossRef  Google Scholar 

  89. Whittaker W (2012) Technologies enabling exploration of skylights, lava tubes and caves. NASA, US, Report, no NNX11AR42G

    Google Scholar 

  90. Blair DM, Chappaz L, Sood R, Milbury C, Bobet A, Melosh HJ et al (2017) The structural stability of lunar lava tubes. Icarus [Internet] 282:47–55. https://doi.org/10.1016/j.icarus.2016.10.008

  91. Wagner RV, Robinson MS (2014) Distribution, formation mechanisms, and significance of lunar pits. Icarus [Internet] 237:52–60. https://doi.org/10.1016/j.icarus.2014.04.002

  92. Huerta P, Martín-Pérez A, Martín-García R, Rodríguez-Berriguete Á, La Iglesia Fernández Á, Alonso-Zarza AM (2019) Gypsum speleothems in lava tubes from Lanzarote (Canary Islands). Ion sources and pathways. Sediment Geol [Internet] 383:136–147. https://linkinghub.elsevier.com/retrieve/pii/S0037073819300375

  93. Forget F, Pollack JB (1996) Thermal infrared observations of the condensing Martian polar caps: CO2 ice temperatures and radiative budget. J Geophys Res Planets [Internet] 101(E7):16865–16879. http://doi.wiley.com/10.1029/96JE01077

  94. Head JW, Mustard JF, Kreslavsky MA, Milliken RE, Marchant DR (2003) Recent ice ages on Mars. Nature [Internet] 426(6968):797–802. http://www.nature.com/articles/nature02114

  95. Wise DU, Golombek MP, McGill GE (1979) Tharsis province of Mars: geologic sequence, geometry, and a deformation mechanism. Icarus [Internet] 38(3):456–472. https://linkinghub.elsevier.com/retrieve/pii/0019103579902008

  96. Wait KW, Goldfarb M (2014) A pneumatically actuated quadrupedal walking robot. IEEE/ASME Trans Mechatronics [Internet] 19(1):339–347. http://ieeexplore.ieee.org/document/6410036/

  97. Elfes A, Steindl R, Talbot F, Kendoul F, Sikka P, Lowe T et al (2017) The Multilegged Autonomous eXplorer (MAX). Proc—IEEE Int Conf Robot Autom 1050–1057

    Google Scholar 

  98. Raibert M, Blankespoor K, Nelson G, Playter R (2008) BigDog, the Rough-Terrain Quadruped Robot [Internet]. IFAC Proc Vol. IFAC 41:10822–10825. https://doi.org/10.3182/20080706-5-KR-1001.01833

  99. Michael K (2012) Meet Boston dynamics’ LS3—the latest robotic war machine. Faculty of Engineering and Information Sciences - Papers: Part A. 2773. https://ro.uow.edu.au/eispapers/2773

  100. Brozovsky J (2013) Comparsion of compressive strengths of concrete testing by different of sclerometers. Procedia Eng [Internet] 65:254–259. https://linkinghub.elsevier.com/retrieve/pii/S1877705813015464

  101. Ximenes SW, Elliott JO, Bannova O (2012) Defining a mission architecture and technologies for lunar lava tube reconnaissance. Earth Sp 2012—Proc 13th ASCE Aerosp Div Conf 5th NASA/ASCE Work Granul Mater Sp Explor 344–354

    Google Scholar 

  102. Manzey D (2004) Human missions to Mars: new psychological challenges and research issues. Acta Astronaut [Internet] 55(3–9):781–790. https://linkinghub.elsevier.com/retrieve/pii/S0094576504001705

  103. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res [Internet] 28(3):141–145. https://pubs.acs.org/doi/abs/10.1021/ar00051a007

  104. Kempe S (2012) Volcanic rock caves. In: Encyclopedia of caves [Internet]. Elsevier, pp 865–873. https://linkinghub.elsevier.com/retrieve/pii/B9780123838322001250

  105. Kempe S (2019) Volcanic rock caves. In: Encyclopedia of caves [Internet]. Elsevier, pp 1118–1127. https://linkinghub.elsevier.com/retrieve/pii/B978012814124300131X

  106. Kauahikaua J, Cashman V, Mattox N, Christina C, Hon A, Mangan T et al (1998) Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai’i. J Geophys Res 103:303–323

    Google Scholar 

  107. Hróarsson B, Jónsson SS (1991) Lava caves in the Hallmundarhraun lava flow, Western Iceland. Proc 6th Int Symp Vulcanospeleol 85–88

    Google Scholar 

  108. Wilkens H, Iliffe TM, Oromí P, Martínez A, Tysall TN, Koenemann S (2009) The Corona lava tube, Lanzarote: geology, habitat diversity and biogeography. Mar Biodivers [Internet] 39(3):155–167. http://link.springer.com/10.1007/s12526-009-0019-2

  109. Calvari S, Pinkerton H (1999) Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res [Internet] 90(3–4):263–280. https://linkinghub.elsevier.com/retrieve/pii/S0377027399000244

  110. Boston PJ, Frederick RD, Welch SM, Werker J, Meyer TR, Sprungman B, Hildreth-Werker V, Thompson SL Murphy, DL (2003) Human utilization of subsurface extraterrestrial environments. Gravitat Sp Biol Bullett 16(2):121–131

    Google Scholar 

  111. Bessone L, Sauro F, Maurer M, Piens M (2018) Testing technologies and operational concepts for field geology exploration of the Moon and beyond: the ESA PANGAEA-X campaign. Geophys Res Abstr 20

    Google Scholar 

  112. Gasser M, Dunn MC (2018) Moon and Mars habitation in lava tubes: the first explorers will be cave men again. Stefánshellir test site in Iceland. In: European planetary science congress 12.

    Google Scholar 

  113. Nakamura Y (2005) Farside deep moonquakes and deep interior of the Moon. J Geophys Res [Internet] 110(E1):E01001. http://doi.wiley.com/10.1029/2004JE002332

  114. Arya AS, Rajasekhar RP, Thangjam G, Ajai, Kiran Kumar AS (2011) Detection of potential site for future human habitability on the Moon using Chandrayaan-1 data. Curr Sci 100(4):524–529

    Google Scholar 

  115. Kerber L et al (2018) Moon diver: a discovery mission concept for understanding the history of the mare basalts through the exploration of a lunar mare pit. In: 49th lunar and planetary science conference

    Google Scholar 

  116. Transeth AA, Leine RI, Glocker C, Pettersen KY, Liljeback P (2008) Snake robot obstacle-aided locomotion: modeling, simulations, and experiments. IEEE Trans Robot [Internet] 24(1):88–104. http://ieeexplore.ieee.org/document/4456759/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Mari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Mari, N., Groemer, G., Sejkora, N. (2021). Potential Futures in Human Habitation of Martian Lava Tubes. In: Leone, G. (eds) Mars: A Volcanic World. Springer, Cham. https://doi.org/10.1007/978-3-030-84103-4_11

Download citation