Skip to main content

Analytical Phase: Alternative and New Control Systems

  • 169 Accesses

Abstract

The external controls discussed in Chap. 10 are derived from normal and/or pathologic archival tissues or more ideally from excess tissues specifically selected and processed for the purpose, with a pre-analytic process matching the test tissues as closely as possible. Reference to Table 9.4 shows that such tissues have limitations, with reference to cost, need for periodic replacement of exhausted blocks and availability (confined to the lab that produces them).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-84087-7_11
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-84087-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8

References

  • Battifora H. Assessment of antigen damage in immunohistochemistry. The vimentin internal control. Am J Clin Pathol. 1991;96:669–71.

    CAS  CrossRef  Google Scholar 

  • Bogen SA. A root cause analysis into the high error rate in clinical immunohistochemistry. Appl Immunohistochem Mol Morph. 2019;27:329–38.

    CrossRef  Google Scholar 

  • Bogen SA, Sompuram SR. Recent trends and advances in immunodiagnostics of solid tumors [review]. BioDrugs. 2004;18:387–98.

    CrossRef  Google Scholar 

  • Capodieci P, Donovan M, Buchinsky H, et al. Gene expression profiling in single cells within tissue. Nat Methods. 2005;2:663–5.

    CAS  CrossRef  Google Scholar 

  • Cheung CC, D’Arrigo C, Dietel M, et al. Evolution of quality assurance for clinical immunohistochemistry in the era of precision medicine—part 4: tissue tools for quality assurance in immunohistochemistry. From the international society for immunohistochemistry and molecular morphology (ISIMM) and international quality network for pathology (IQN path). Appl Immunohistochem Mol Morph. 2017;25:227–30.

    CAS  CrossRef  Google Scholar 

  • Conan Doyle A. The adventures of Sherlock Holmes. Adventure XI. The adventure of the Beryl coronet. Strand Mag. 1892;3:511–25.

    Google Scholar 

  • De Bono E. Lateral thinking. London: Pelican Books; 1970.

    Google Scholar 

  • Fulton R. Getting a grip on Ki67. Appl Immunohistochem Mol Morph. 2021;29:83–5.

    Google Scholar 

  • Gu J, Taylor CR. Practicing pathology in the era of big data and personalized medicine. Appl Immunohistochem Mol Morph. 2014;22:1–9.

    CrossRef  Google Scholar 

  • Ingram M, Tachy GB, Ward BR, et al. Tissue engineered tumor models. Biotech Histochem. 2010;85:213–9.

    CAS  CrossRef  Google Scholar 

  • Jasani B, Thomas ND, Navabi H, Millar DM, Newman GR, Gee J, Williams ED. Dinitrophenyl (DNP) hapten sandwich staining (DHSS) procedure: a 10-year review of its principal reagents and applications. J Immunol Methods. 1992;150(1–2):193–8.

    CAS  CrossRef  Google Scholar 

  • Jensen K, Krusenstjerna-Hafstrøm R, Lohse J, Petersen KP, Derand H. A novel quantitative immunohistochemistry method for precise protein measurements directly in formalin-fixed, paraffin-embedded specimens: analytical performance measuring HER2. Mod Pathol. 2017;30:180–93. https://doi.org/10.1038/modpathol.2016.176.

    CAS  CrossRef  PubMed  Google Scholar 

  • Kaur P, Ward B, Saha B, Young L, Groshen S, Techy G, Lu Y, Atkinson R, Taylor CR, Ingram M, Imam A. Human breast cancer histioid: an in vitro 3D co-culture model that mimics breast tumor tissue. J Histochem Cytochem. 2011;59:1087–100.

    CAS  CrossRef  Google Scholar 

  • Koppel C, Schwellenbach H, Zielinski D, Eckstein S, Martin-Ortega M, D’Arrigo C, Schildhaus H-U, Ruschoff J, Jasani B. Optimization and validation of PD-L1 immunohistochemistry staining protocols using the antibody clone 28-8 on different staining platforms. Mod Pathol. 2018;31:1630–44.

    CAS  CrossRef  Google Scholar 

  • Maund S, Nolley R, Peehl D. Optimization and comprehensive characterization of a faithful tissue culture model of the benign and malignant human prostate. Lab Investig. 2014;94:208–21. https://doi.org/10.1038/labinvest.2013.141.

    CAS  CrossRef  PubMed  Google Scholar 

  • Millar DA, Williams ED. A step-wedge standard for the quantification of immunoperoxidase techniques. Histochem J. 1982;14:609–20. https://doi.org/10.1007/BF01011893.

    CAS  CrossRef  PubMed  Google Scholar 

  • Mire-Sluis A, Ritter N, Cherney B, Schmalzing D, Blumel M. Reference standards for therapeutic proteins: current regulatory and scientific best practices and remaining needs. Part 1. BioProcess Int. 2014a;12(3):26–36. https://bioprocessintl.com/upstream-processing/assays/reference-standards-for-therapeutic-proteins-350518/

    Google Scholar 

  • Mire-Sluis A, Ritter N, Cherney B, Schmalzing D, Blumel M. Reference standards for therapeutic proteins: current regulatory and scientific best practices and remaining needs. Part 2. BioProcess Int. 2014b;12(5):12–38. https://bioprocessintl.com/2014/reference-standards-for-therapeutic-proteins-351584/

    Google Scholar 

  • Neumeister VM, Parisi F, England AM, et al. Models and techniques. A tissue quality index; an intrinsic control for measurement of effects of pre-analytic variables on FFPE tissue. Lab Investig. 2014;94:467–74.

    CAS  CrossRef  Google Scholar 

  • Pagliarulo V, George B, Beil SJ, Groshen S, Laird PW, Cai J, Willey J, Cote RC, Datar RH. Sensitivity and reproducibility of standardized competitive RT-PCR for transcript quantification and its comparison with real time RT-PCR. Mol Cancer. 2004;3:5. https://doi.org/10.1186/1476-4598-3-5.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Parry S, Dowsett M, Dodson A. UKNEQAS ICC & ISH Ki67 data reveals differences in performance of primary antibody clones. Appl Immunohistochem Mol Morph. 2021;29:86–94.

    CAS  CrossRef  Google Scholar 

  • Phillips T, Simmons P, Inzunza HD, Cogswell J, Novotny J, Taylor CR, Zhang X. Development of an automated PD-L1 immunohistochemistry (IHC) assay for non small cell lung cancer. Appl Immunohistochem Mol Morph. 2015;23:541–9. https://doi.org/10.1097/PAI.0000000000000256.

    CAS  CrossRef  Google Scholar 

  • Riera J, Simpson JF, Tamayo R, Battifora H. Use of cultured cells as a control for quantitative immunocytochemical analysis of estrogen receptor in breast cancer. The Quicgel method. Am J Clin Pathol. 1999;111:329–35.

    CAS  CrossRef  Google Scholar 

  • Roge R, Nielsen S, Riber-Hanssen R, Vyberg M. Image analysis assessed cell lines as potential performance controls of Ki67 immunostained slides. Appl Immunohistochem Mol Morph. 2021a;29:95–8.

    CAS  CrossRef  Google Scholar 

  • Roge R, Nielsen S, Riber-Hanssen R, Vyberg M. Ki67 proliferation index in breast cancer as a function of assessment method: a NordiQC experience. Appl Immunohistochem Mol Morph. 2021b;29:99–104.

    CAS  CrossRef  Google Scholar 

  • Shi S-R, Liu C, Balgley BM, Lee C, Taylor CR. Protein extraction from formalin-fixed, paraffin embedded tissue sections: quality evaluation by mass spectrometry. J Histochem Cytochem. 2006;54:739–43.

    CAS  CrossRef  Google Scholar 

  • Sompuram SR, Vani K, Hafer LJ, Bogen SA. Antibodies immunoreactive with formalin-fixed tissue antigens recognize linear protein epitopes. Am J Clin Pathol. 2006;125:82–90.

    CAS  CrossRef  Google Scholar 

  • Taylor CR. Quantifiable internal reference standards for immunohistochemistry: the measurement of quantity by weight. Appl Immunohistochem Mol Morph. 2006;14:253–9.

    CrossRef  Google Scholar 

  • Taylor CR, Cote RJ, editors. Immunomicroscopy: a diagnostic tool for the surgical pathologist. 3rd ed. Philadelphia: Elsevier Saunders; 2005. (1st edition, Taylor was 1986; 2nd edition, Taylor and Cote was 1994).

    Google Scholar 

  • Taylor CR. Predictive biomarkers and companion diagnostics. The future of immunohistochemistry—‘in situ proteomics’, or just a ‘stain’? Appl Immunohistochem Mol Morph. 2014;22:555–61.

    CrossRef  Google Scholar 

  • Taylor CR. Quantitative in situ proteomics; a proposed pathway for quantification of immunohistochemistry at the light-microscopic level. Cell Tissue Res. 2015;360:109–20.

    CAS  CrossRef  Google Scholar 

  • Taylor CR. Introduction to predictive biomarkers: definitions and characteristics. In: Badve S, Kumar G, editors. Predictive biomarkers in oncology: applications in precision medicine. Berlin: Springer Sciences; 2019.

    Google Scholar 

  • Taylor CR, Becker KF. Liquid morphology: immunochemical analysis of proteins extracted from formalin fixed paraffin embedded tissues: combining proteomics with immunohistochemistry. Appl Immunohistochem Mol Morph. 2011;19:1–9.

    CrossRef  Google Scholar 

  • Taylor CR, Burns J. The demonstration of plasma cells and other immunoglobulin- containing cells in formalin-fixed, paraffin-embedded tissues using peroxidase-labelled antibody. J Clin Pathol. 1974;27:14–20.

    CAS  CrossRef  Google Scholar 

  • Taylor CR, Levenson RM. Quantification of immunohistochemistry—issues concerning methods, utility and semiquantitative assessment. Histopathology. 2006;49:411–24.

    CAS  CrossRef  Google Scholar 

  • Van den Berg EJ, Duarte R, Dickens C, et al. Ki67 immunohistochemistry quantification i breast carcinoma: a comparison of visual estimation, counting and immunoratio. Appl Immunohistochem Mol Morph. 2021;29:105–11.

    CrossRef  Google Scholar 

  • Van der Ploeg M, Duijndam WAL. Matrix models: essential tools for microscopic cytochemical research. Histochemistry. 1986;84:283–300.

    CrossRef  Google Scholar 

  • Vani K, Sompuram SR, Fitzgibbons P, Bogen SA. National HER2 proficiency test results using standardized quantitative controls: characterization of laboratory failures. Arch Pathol Lab Med. 2008;132:211–6.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Jasani, B., Huss, R., Taylor, C.R. (2021). Analytical Phase: Alternative and New Control Systems. In: Precision Cancer Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-84087-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84087-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84086-0

  • Online ISBN: 978-3-030-84087-7

  • eBook Packages: MedicineMedicine (R0)