Skip to main content

Introduction to Ultra-Precision High Performance Cutting

  • Chapter
  • First Online:
Ultra-precision High Performance Cutting

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

  • 536 Accesses

Abstract

Over the past decades, Ultra-precision (UP) diamond machining has evolved to an established technology for generating complex optical surfaces as well as for producing parts with high mechanical accuracy [7] (see Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arneson, C., Liebers, M.: History of the blockhead spindle. In: 33rd ASPE Annual Meeting. Las Vegas/NV, 4 November 2018

    Google Scholar 

  2. Brandt, C., et al.: Surface generation process with consideration of the balancing state in diamond machining. In: Denkena, B., Hollmann, F. (eds.) Process Machine Interactions. Lecture Notes in Production Engineering, pp. 329–360. Springer, Cham (2013)

    Google Scholar 

  3. Brecher, C., Lindemann, D., Merz, M., Wenzel, C., Preuss, W.: Freeform machining of molds for replication of plastic optics. In: Brinksmeier, E., Gläbe, R., Riemer, O. (eds.) Fabrication of Complex Optical Components. Lecture Notes in Production Engineering, pp. 41–52. Springer, Cham (2013)

    Google Scholar 

  4. Brinksmeier, E., Gläbe, R., Osmer, J.: Ultra-precision diamond cutting of steel molds. CIRP Ann. 55(1), 551–554 (2006). https://doi.org/10.1016/S0007-8506(07)60480-6

    Article  Google Scholar 

  5. Brinksmeier, E., Gläbe, R., Krause, A.: Precision balancing in ultraprecision diamond machining. In: Thornett, E.E (ed.) 8th International Conference on Laser Metrology, Machine Tool, pp. 262–269. CMM & Robotic Performance (Lamdamap 2007) (2007)

    Google Scholar 

  6. Brinksmeier, E., Preuss, W.: Micro-machining. Philos. Trans. R. Soc. A 370, 3973–3992 (2012). https://doi.org/10.1098/rsta.2011.0056

    Article  CAS  Google Scholar 

  7. Brinksmeier, E.: Ultraprecision machining. In: CIRP Encyclopedia of Production Engineering, pp. 1–5. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-642-35950-7_6403-4

  8. Bryan, J.B.: Design and construction of an ultraprecision 84 inch diamond turning machine. Precision Eng. 1(1), 13–17 (1979). https://doi.org/10.1016/0141-6359(79)90071-0

    Article  Google Scholar 

  9. Carpenter, A.J.: Locating device for precision tools. U.S. Patent 2 948 817, 9 August 1960

    Google Scholar 

  10. Chapman, G.: Ultra-precision Systems; an Enabling Technology for Perfect Surfaces. Technical Report, Moore Nanotechnology Systems (2004)

    Google Scholar 

  11. Cheng, M.N., Cheung, C.F., Lee, W.B., To, S., Kong, L.B.: Theoretical and experimental analysis of nano-surface generation in ultra-precision raster milling. Int. J. Mach. Tools Manuf. 48(10), 1090–1102 (2008). https://doi.org/10.1016/j.ijmachtools.2008.02.006

    Article  Google Scholar 

  12. Davies, M.A., Dutterer, B.S., Suleski, T.J., Silny, J.F., Kim, E.D.: Diamond machining of diffraction gratings for imaging spectrometers. Precision Eng. 36(2), 334–338 (2012). https://doi.org/10.1016/j.precisioneng.2011.09.006

    Article  Google Scholar 

  13. Dewes, R.C., Aspinwall, D.K.: A review of ultra high speed milling of hardened steels. J. Mater. Process. Technol. 69(1–3), 1–17 (1997). https://doi.org/10.1016/S0924-0136(96)00042-8

    Article  Google Scholar 

  14. Douglass, S.S.: A Machining System for Turning Nonaxis symmetric surfaces. Ph.D. thesis. University of Tennessee, Knoxville (1983)

    Google Scholar 

  15. Dow, T.A., Miller, M.H., Falter, P.J.: Application of a fast tool servo for diamond turning of non rotationally symmetric surfaces. Precision Eng. 13(4), 243–250 (1991). https://doi.org/10.1016/0141-6359(91)90001-y

    Article  Google Scholar 

  16. Evans, C.: Precision engineering : an evolutionary view. Cranfield Press, Bedford, UK (1989)

    Google Scholar 

  17. Fernandez-Moran, V.H.: Diamond cutting tool having and edge thickness of 0.001 to 0.01 micron. U.S. Patent 30 60 781 (1954)

    Google Scholar 

  18. Grejda, R., Marsh, E., Vallance, R.: Techniques for calibrating spindles with nanometer error motion. Precision Eng. 29(1), 113–123 (2005). https://doi.org/10.1016/j.precisioneng.2004.05.003

    Article  Google Scholar 

  19. GT1976. KLF-A Weißenburg and fire station Weißenburg at Unterabschnitts- Übung at Tiefgrabenrotte, Frankenfels, Austria. CC BY-SA 4.0 (2018). https://de.wikipedia.org/wiki/Datei:2018-09-14_(708)_KLFA_Wei%C3%9Fenburg _and_fire_ station_Wei%C3%9Fenburg_at_Unterabschnitts-%C3%9Cbung_at_Tiefgrabenrotte,_Frankenfels,_Austria.jpg. Accessed 25 Feb 2021

  20. Huang, P., Lee, W.B., Chan, C.Y.: Investigation of the effects of spindle unbalance induced error motion on machining accuracy in ultra-precision diamond turning. Int. J. Mach. Tools Manuf. 94, 48–56 (2015). https://doi.org/10.1016/j.ijmachtools.2015.04.007

    Article  Google Scholar 

  21. Ikawa, N., et al.: Ultraprecision metal cutting - the past, the present and the future. CIRP Ann. 40(2), 587–594 (1991). https://doi.org/10.1016/s0007-8506(07)61134-2

    Article  Google Scholar 

  22. Jahanmir, S.: Surface integrity in ultrahigh speed micromachining. Procedia Eng. 19, 156–161 (2011). https://doi.org/10.1016/j.proeng.2011.11.095

    Article  Google Scholar 

  23. Knapp, B., Arneson, D., Oss, D., Liebers, M., Vallance, R., Marsh, E.: The importance of spindle balancing for the machining of freeform optics. In: ASPE Spring Topical Meeting, vol. 51, pp. 74–78. ASPE, Raleigh, NC (2011)

    Google Scholar 

  24. Kong, L.B., Cheung, C.F., To, S., Lee, W.B.: An investigation into surface generation in ultra-precision raster milling. J. Mater. Process. Technol. 209(8), 4178–4185 (2009). https://doi.org/10.1016/j.jmatprotec.2008.11.002

    Article  CAS  Google Scholar 

  25. Lucca, D., Rhorer, R., Komanduri, R.: Energy dissipation in the ultraprecision machining of copper. CIRP Ann. 40(1), 69–72 (1991). https://doi.org/10.1016/s0007-8506(07)61936-2

    Article  Google Scholar 

  26. Lucca, D., Seo, Y., Komanduri, R.: Effect of tool edge geometry on energy dissipation in ultraprecision machining. CIRP Ann. 42(1), 83–86 (1993). https://doi.org/10.1016/s0007-8506(07)62397-x

    Article  Google Scholar 

  27. Lucca, D., Seo, Y., Rhorer, R., Donaldson, R.: Aspects of surface generation in orthogonal ultraprecision machining. CIRP Ann. 43(1), 43–46 (1994). https://doi.org/10.1016/s0007-8506(07)62160-x

    Article  Google Scholar 

  28. McKeown, P.A., Wills-Moren, W., Read, R.F.J., Modjarrad, H.: The design and development of a large ultra-precision CNC diamond turning machine. Adv. Manuf. Processes 1(1), 133–157 (1986). https://doi.org/10.1080/10426918608953160

    Article  Google Scholar 

  29. Michelson, A.A.: The ruling and performance of a ten-inch diffraction grating. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 1, no. 7, pp. 396–400 (1915)

    Google Scholar 

  30. Moore Tools. About Moore Tool: Precision Machining Technology, Precision Tools (2021). http://mooretool.com/about.html .Accessed 25 Feb 2021

  31. Moore, W.R.: Foundations of Mechanical Accuracy. The Moore Special Tools Company (1970)

    Google Scholar 

  32. Moriwaki, T., Shamoto, E.: Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann. 40(1), 559–562 (1991). https://doi.org/10.1016/S0007-8506(07)62053-8

    Article  Google Scholar 

  33. NASA. Rayon laser à travers un dispositif optique. public domain (2004). https://commons.wikimedia.org/wiki/File:Laser_optique.jpg. Accessed 25 Feb 2021

  34. Negadrive. El Enano robotic telescope, Las Cumbres Observatory. CC BY-SA 3.0 (1999). https://commons.wikimedia.org/wiki/File:El_Enano_robotic_telescope.jpg. Accessed 25 Feb 2021

  35. Paul, E., Evans, C.J., Mangamelli, A., McGlauflin, M.L., Polvani, R.S.: Chemical aspects of tool wear in single point diamond turning. Precis. Eng. 18(1), 4–19 (1996). https://doi.org/10.1016/0141-6359(95)00019-4

    Article  Google Scholar 

  36. Preuss, W.: A Guide to Diamond Machining. Shaker-Verlag (2019)

    Google Scholar 

  37. Pride, M.: 2010 Lexus LS 460 HID headlamp. CC BY-SA 3.0 (2010). https://commons.wikimedia.org/wiki/File:2010_Lexus_LS_460_Headlight.jpg. Accessed 25 Feb 2021

  38. Saito, T.T.: Machining of optics: an introduction. Appl. Optics 14(8), 1773 (1975). https://doi.org/10.1364/ao.14.001773

    Article  CAS  Google Scholar 

  39. Saito, T.T., Wasley, R.J., Stowers, I.F., Donaldson, R.R., Thompson, D.C.: Precision and manufacturing at the Lawrence Livermore National Laboratory. In: NASA 2003 Conference, 1 November 1993

    Google Scholar 

  40. Schönemann, L., et al.: Synergistic approaches to ultra-precision high performance cutting. CIRP J. Manuf. Sci. Technol. 28, 38–51 (2020). https://doi.org/10.1016/j.cirpj.2019.12.001

    Article  Google Scholar 

  41. Schulz, H., Moriwaki, T.: High-speed machining. CIRP Ann. 41(2), 637–643 (1992). https://doi.org/10.1016/S0007-8506(07)63250-8

    Article  Google Scholar 

  42. Slocum, A.: Precision machine design. Prentice Hall, Englewood Cliffs, N.J (1992)

    Google Scholar 

  43. Takasu, S., Masuda, M., Nishiguchi, T., Kobayashi, A.: Influence of study vibration with small amplitude upon surface roughness in diamond machining. CIRP Ann. 34(1), 463–467 (1985). https://doi.org/10.1016/S0007-8506(07)61812-5

    Article  Google Scholar 

  44. Taniguchi, N.: Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann. 32(2), 573–582 (1983). https://doi.org/10.1016/s0007-8506(07)60185-1

    Article  Google Scholar 

  45. Thompson, D.C.: Theoretical tool movement required to diamond turn an off-axis paraboloid on axis. Technical Report, Lawrence Livermore Laboratory, 19 December 1975

    Google Scholar 

  46. Wang, S.J., To, S., Chen, X., Chen, X.D., Ouyang, X.B.: An integrated optimization of cutting parameters and tool path generation in ultraprecision raster milling. Int. J. Adv. Manuf. Technol. 75(9–12), 1711–1721 (2014). https://doi.org/10.1007/s00170-014-6254-0

    Article  Google Scholar 

  47. Werner, M.: Lytro-Light-field camera at Ars Electronica 2013 at Brucknerhaus, Linz, Upper Austria. CC BY-SA 3.0 (2013). https://commons.wikimedia.org/wiki/File:Ars_Electronica_Festival_2013_Lytro_lightfield_photography_03.jpg. Visited 25 Feb 2021

  48. Wills-Moren, W., Modjarrad, H., Read, R., McKeown, P.: Some aspects of the design and development of a large high precision CNC diamond turning machine. CIRP Ann. 31(1), 409–414 (1982). https://doi.org/10.1016/s0007-8506(07)63338-1

    Article  Google Scholar 

  49. Wu, Y., Peng, W., Liu, Y.: A novel fabrication method for micro optical waveguide mold based on fly-cutting technology. Optik - Int. J. Light Electr. Optics 124(9), 867–869 (2013). https://doi.org/10.1016/j.ijleo.2012.02.020

    Article  CAS  Google Scholar 

  50. Zhang, S.J., To, S.: The effects of spindle vibration on surface generation in ultra-precision raster milling. Int. J. Mach. Tools Manuf. 71, 52–56 (2013). https://doi.org/10.1016/j.ijmachtools.2013.04.005

    Article  Google Scholar 

  51. Zhang, S.J., To, S., Zhu, Z.W., Zhang, G.Q.: A review of fly cutting applied to surface generation in ultra-precision machining. Int. J. Mach. Tools Manuf. 103, 13–27 (2016). https://doi.org/10.1016/j.ijmachtools.2016.01.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Schönemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schönemann, L. (2022). Introduction to Ultra-Precision High Performance Cutting. In: Brinksmeier, E., Schönemann, L. (eds) Ultra-precision High Performance Cutting. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-83765-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83765-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83764-8

  • Online ISBN: 978-3-030-83765-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics