Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12479))

Included in the following conference series:

Abstract

The railways have a quite long modelling history, covering many technical aspects from infrastructure to rolling stock, train movement, maintenance, etc. These models are mostly separate and operated independently by various stakeholders and with diverse objectives. This article presents some of the various digital modelling activities, including formal ones, that are undertaken by the railway industry, for design, development, validation, qualification, and exploitation. It also introduces trends toward regrouping models to obtain more significant results together with a larger scope, prefiguring digital twins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.era.europa.eu/content/set-specifications-3-etc.s-b3-r2-gsm-r-b1_en.

  2. 2.

    The combination of continuous and discrete models to associate a logic controller to the physics of a controlled system described with differential equations.

  3. 3.

    https://megamart2-ecsel.eu/.

  4. 4.

    Call for Project 2R-OC-IP2-01-2020.

  5. 5.

    https://www.sncf-reseau.com/en/entreprise/newsroom/sujet/the-digital-twin.

  6. 6.

    https://www.anylogic.com/digital-twin-of-rail-network-for-train-fleet-maintenance-decision-support/.

  7. 7.

    https://tech.sncf.com/dossier/train-autonome/.

  8. 8.

    For example, respectively functional vs safety, seconds for slipping vs thousands years for rail maintenance, and development vs certification.

  9. 9.

    SNCF test bench BATIR enabling the real-time functional simulation, including HiL, of full high speed trains to validate embedded software.

  10. 10.

    “Bring in the disruptors to drive rail innovation”, Stuart Calvert, Digital Rail, TransCityRail North conference, London, 06/10/2017.

  11. 11.

    H2020 Call SU-INFRA-01-2020: Prevention, detection, response and mitigation of combined physical and cyber security threats to critical infrastructure in Europe.

References

  1. Alacoque, J.C., Chapas, P.: Traction ferroviaire adhérence par commande d’effort. Techniques de l’ingénieur Infrastructure ferroviaire et matériel roulant base documentaire : TIB576DUO. (ref. article : d5535) (2005). https://www.techniques-ingenieur.fr/base-documentaire/ingenierie-des-transports-th14/infrastructure-ferroviaire-et-materiel-roulant-42576210/traction-ferroviaire-d5535/, fre

  2. Banach, R.: Issues in automated urban train control: ‘tackling’ the rugby club problem. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 171–186. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_12

    Chapter  Google Scholar 

  3. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2_22

    Chapter  Google Scholar 

  4. Bouillot, L.: Dynamic bayesian networks modelling maintenance strategies: prevention of broken rails. In: WCCR 2008, vol. 2008, Seoul, South Korea (2008)

    Google Scholar 

  5. Ciszewski, T., Kornaszewski, M., Nowakowski, W.: RailML application for description of railway interlocking systems, vol. 19, pp. 373–377, December 2018

    Google Scholar 

  6. Comptier, M., Déharbe, D., Perez, J., Mussat, L., Pierre, T., Sabatier, D.: Safety analysis of a CBTC system: a rigorous approach with event-B. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp. 148–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4_10

    Chapter  Google Scholar 

  7. Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J.M., Mutz, M.: Property-based modelling and validation of a CBTC zone controller in event-B. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 202–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_13

    Chapter  Google Scholar 

  8. Dillmann, S., Hähnle, R.: Automated planning of ETCS tracks. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 79–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_5

    Chapter  Google Scholar 

  9. Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_15

    Chapter  Google Scholar 

  10. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking control tables. In: Schnieder, A., Tarnai, G. (eds.) FORMS/FORMAT 2010, pp. 107–115. Springer, Heidedlberg (2011). https://doi.org/10.1007/978-3-642-14261-1_11

    Chapter  Google Scholar 

  11. Halchin, A., Feliachi, A., Singh, N.K., Aït-Ameur, Y., Ordioni, J.: B-PERFect - Applying the PERF approach to B based system developments. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp. 160–172. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4_11, https://hal.archives-ouvertes.fr/hal-02451007

  12. Hansen, D., et al.: Validation and real-life demonstration of ETCS hybrid level 3 principles using a formal B model. Int. J. Softw. Tools Technol. Transf. 22, 315–332 (2020)

    Article  Google Scholar 

  13. Hlubuček, A.: Railtopomodel and RailML 3 in overall context. In: Acta Polytechnica CTU Proceedings, vol. 11, p. 16, August 2017

    Google Scholar 

  14. Lecomte, T., Mottin, E.: Formal data validation in the railways. In: Safety Critical Symposium, Brighton, UK (2016)

    Google Scholar 

  15. Malvezzi, M., Pugi, L., Papini, S., Rindi, A., Toni, P.: Identification of a wheel-rail adhesion coefficient from experimental data during braking tests. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 227, 128–139 (2013)

    Article  Google Scholar 

  16. Metayer, C., Clabaut, M.: DIR 41 case study. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 357–373. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87603-8_44

    Chapter  Google Scholar 

  17. Peleska, J., Krafczyk, N., Haxthausen, A.E., Pinger, R.: Efficient data validation for geographical interlocking systems. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 142–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_9

    Chapter  Google Scholar 

  18. Quost, X.: Modélisation de l’effet du vent sur les trains à grande vitesse. Ph.D. thesis, Ecole Centrale de Lyon (2005)

    Google Scholar 

  19. Sabatier, D.: Using formal proof and B method at system level for industrial projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_2

    Chapter  Google Scholar 

  20. Wikipedia Contributors: Fundamentals of transportation/timetabling and scheduling – wikibooks (2020). https://en.wikibooks.org/wiki/Fundamentals_of_Transportation/ Timetabling_and_Scheduling. Accessed 05 June 2020

  21. Wikipedia Contributors: Programmable logic controller – Wikipedia, the free encyclopedia (2020). https://en.wikipedia.org/wiki/Programmable_logic_controller. Accessed 08 May 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Lecomte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lecomte, T. (2021). Digital Modelling in the Railways. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Tools and Trends. ISoLA 2020. Lecture Notes in Computer Science(), vol 12479. Springer, Cham. https://doi.org/10.1007/978-3-030-83723-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83723-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83722-8

  • Online ISBN: 978-3-030-83723-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics