Abstract
Steel fibre reinforced concrete (SFRC) becomes increasingly interesting for structural design and application. However, to reinforce structures just with steel fibres – not including any rebar – supercritical fibre contents are essential to ensure hardening behaviour in the post-cracking domain. Material properties are usually determined from experiments conducting three- or four-point bending tests. Specific conversion factors capture the softening behaviour and enable to transform flexural into tensile strengths. Own experiments prove that fibre contents of 1.8 Vol.-% yield flexural strengths of about 8 MPa. To get definite and reliable tensile strengths, direct tensile tests on optimised bone-shaped specimens made of supercritical SFRC are proposed here. As a specimen a slab (w × h × l = 200 × 100 × 720 mm3) is casted horizontally. That way, fibre orientation and distribution representative for practically relevant slabs with 10 cm thickness are simulated. To eliminate the so-called wall-effect that occurs during casting, the edges are cut off by water jet cutting before testing. Two pairs of displacement transducers on each face of the slab record the crack opening over a measuring length of 100 mm on the top and 400 mm on the bottom face. A new test set-up is introduced. Loading is applied to the specimen by friction using pre-tensioned threaded steel rods. Coating with an epoxy resin and corundum guarantees the required coefficient of friction. Displacement transducers on the top and bottom of the specimen record the relative displacement between the specimen and the test station. Axial loading is induced by a triangular steel structure (framework). Strain gauges on the outer faces of the diagonal struts control inevitable eccentricities of the load transfer. Consequently, highly accurate measurements are recorded. During testing, the crack flanks are slowly pulled apart from another (up to 4 mm) but without complete separation. On average a maximum tensile strength of 3 MPa and a coefficient of variation of 11% for maximum force is recorded what indicates a small scatter and highly accurate strengths.
Keywords
- Steel fibre reinforced concrete
- Tensile test
- Substitute reinforcement
- Supercritical fibre content
- Hardening behaviour
- Bone shape
This is a preview of subscription content, access via your institution.
Buying options








References
Forman, P., Gaganelis, G., Mark, P.: Optimierungsgestützt entwerfen und bemessen. Bautechnik 97(10), 697–707 (2020). https://doi.org/10.1002/bate.202000054
Forman, P., Penkert, S., Mark, P., Schnell, J.: Design of modular concrete heliostats symmetry reduction methods. Civil Eng. Des. 2(4), 92–103 (2020). https://doi.org/10.1002/cend.202000013
Gaganelis, G., Mark, P.: Downsizing weight while upsizing efficiency – an experimental approach to develop optimized ultra-light UHPC hybrid beams. Struct. Concr. 20(6), 1883–1895 (2019). https://doi.org/10.1002/suco.201900215
Heek, P., Tkocz, J., Mark, P.: A thermo-mechanical model for SFRC beams or slabs at elevated temperatures. Mater. Struct. 51(4), 1–16 (2018). https://doi.org/10.1617/s11527-018-1218-8
Heek, P., Tkocz, J., Thiele, C., Vitt, G., Mark, P.: Fasern unter Feuer. Beton- und Stahlbetonbau 110(10), 656–671 (2015). https://doi.org/10.1002/best.201500046
Heek, P., Ahrens, M.A., Mark, P.: Incremental-iterative model for time-variant analysis of SFRC subjected to flexural fatigue. Mater. Struct. 50(1), 1–15 (2017). https://doi.org/10.1617/s11527-016-0928-z. Article No. 62
Heek, P., Mark, P.: Zur Ermüdung von Beton und Stahlfaserbeton. Beton- und Stahlbetonbau 111(4), 221–232 (2016). https://doi.org/10.1002/best.201500054
Empelmann, M., Oettel, V., Cramer, J.: ‘Berechnung der Rissbreite von mit Stahlfasern und Betonstahl bewehrten Betonbauteilen‘. Beton- und Stahlbetonbau 115(2), 136–145 (2020). https://doi.org/10.1002/best.201900065
Plizzari, G., Serna, P.: Structural effects of FRC creep. Mater. Struct. 51(6), 1–11 (2018). https://doi.org/10.1617/s11527-018-1290-0. Article No. 167
Di Prisco, M., Plizzari, G., Vandewalle, L.: Fibre reinforced concrete: new design perspectives. Mater. Struct. 42(9), 1261–1281 (2009). https://doi.org/10.1617/s11527-009-9529-4
Look, K., Heek, P., Mark, P.: Stahlfaserbetonbauteile praxisgerecht berechnen, bemessen und optimieren. Beton- und Stahlbetonbau 114(5), 296–306 (2019). https://doi.org/10.1002/best.201800097
Mark, P., Oettel, V., Look, K., Empelmann, M.: Neuauflage DAfStb-Richtlinie Stahlfaserbeton. Beton- und Stahlbetonbau 116(1) (2021). https://doi.org/10.1002/best.202000065
Look, K., Heek, P., Mark, P.: Towards rebar substitution by fibres - tailored supercritical fibre contents. In: Serna, P., et al. (eds.) BEFIB 2020, RILEM Bookseries, vol. 30, pp. 908–919 (2020)
Lin, Y.-z.: DAfStb-Heft 494: Tragverhalten von Stahlfaserbeton. Institut für Massivbau und Baustofftechnologie, Universität Karlsruhe, Dissertation (1996)
Soroushian, P., Lee, C.-D.: Tensile strength of steel fiber reinforced concrete - correlation with some measures of fiber spacing. Mater. J. 87(6), 542–546 (1990)
Soroushian, P., Lee, C.-D.: Distribution and orientation of fibers in steel fiber reinforced concrete. Mater. J. 87(5), 433–439 (1990)
Stähli, P., Custer, R., van Mier, J.G.M.: On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater. Struct. 41(1), 189–196 (2008). https://doi.org/10.1617/s11527-007-9229-x
Lanwer, J.-P., Oettel, V., Empelmann, M., Höper, S., Kowalsky, U., Dinkler, D.: Bond behavior of micro steel fibers embedded in ultra-high performance concrete subjected to monotonic and cyclic loading. Struct. Concr. 20(4), 1243–1253 (2019). https://doi.org/10.1002/suco.201900030
Mattheck, C., Kappel, R., Sauer, A.: Shape optimization the easy way - the method of tensile triangles. Int. J. Des. Nat. Ecodyn. 2(4), 301–309 (2007). https://doi.org/10.2495/D&N-V2-N4-301-309
Mattheck, C.: Design and growth rules for biological structures and their application to engineering. Fatigue Fract. Eng. Mater. Struct. 13(5), 535–550 (1990). https://doi.org/10.1111/j.1460-2695.1990.tb00623.x
Mattheck, C.: Engineering components grow like trees. Materialwiss. Werkstofftech. 21(4), 143–168 (1990). https://doi.org/10.1002/mawe.19900210403
EN 13369: Common rules for precast concrete products (2018)
International Federation for Structural Concrete: fib Model Code for Concrete Structures 2010. Ernst & Sohn, Berlin (2013)
Deutscher Ausschuss für Stahlbeton: DAfStb-Richtlinie Stahlfaserbeton, Beuth, Berlin (2012)
prEN 1992-1-1 – Annex L, Draft D7 to the Eurocode 2 (2020)
Acknowledgements
The authors would like to thank BASF SE, BauMineral GmbH, NV Bekaert SA and Dyckerhoff GmbH for the friendly provision of the test materials. Many thanks also to the members of the Structural Testing Laboratory KIBKON.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 RILEM
About this paper
Cite this paper
Look, K., Heek, P., Mark, P. (2022). Direct Tensile Tests of Supercritical Steel Fibre Reinforced Concrete. In: Serna, P., Llano-Torre, A., Martí-Vargas, J.R., Navarro-Gregori, J. (eds) Fibre Reinforced Concrete: Improvements and Innovations II. BEFIB 2021. RILEM Bookseries, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-83719-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-83719-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-83718-1
Online ISBN: 978-3-030-83719-8
eBook Packages: EngineeringEngineering (R0)