Skip to main content

Fatigue of Plastic Fibre Reinforced Concrete in Bending: Assessment and Prediction

  • Conference paper
  • First Online:
Fibre Reinforced Concrete: Improvements and Innovations II (BEFIB 2021)

Part of the book series: RILEM Bookseries ((RILEM,volume 36))

Included in the following conference series:

  • 1985 Accesses

Abstract

The present paper deals with an experimental study on the flexural fatigue behaviour of pre-cracked polypropylene fibre reinforced concrete with two different volume of fibre. Mechanical response was evaluated through compressive strength, elastic modulus and static bending test. Fatigue test considered an initial crack width accepted in the service limit state and the evolution of the crack opening displacement of the beams subjected to a prescribed number of cycles (1,000,000 or 2,000,000). After the cyclic load, the post-fatigue residual strength was evaluated and compared to the static response. Results suggest that the mechanism of crack development is independent of the adopted fibre content. The post-fatigue strength seems to be unaffected by accumulated damage due to cyclic load and the static load-crack opening displacement curve might be used as a criterion to predict the residual strength. Furthermore, a conceptual model is proposed to predict the crack opening as a function of number of cycles in view of accumulated fatigue damage. The equation was validated for different fibre content and polypropylene fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De La Fuente, A., Escariz, R.C., De Figueiredo, A.D., Aguado, A.: Design of macro-synthetic fibre reinforced concrete pipes. Constr. Build. Mater. 43, 523–532 (2013). https://doi.org/10.1016/j.conbuildmat.2013.02.036

    Article  Google Scholar 

  2. De La Fuente, A., Pons, O., Josa, A., Aguado, A.: Multi-criteria decision making in the sustainability assessment of sewerage pipe systems. J. Clean. Prod. 112, 4762–4770 (2016). https://doi.org/10.1016/j.jclepro.2015.07.002

    Article  Google Scholar 

  3. Conforti, A., Tiberti, G., Plizzari, G.A., Caratelli, A., Meda, A.: Precast tunnel segments reinforced by macro-synthetic fibers. Tunn. Undergr. Sp. Technol. 63, 1–11 (2017). https://doi.org/10.1016/j.tust.2016.12.005

    Article  Google Scholar 

  4. de la Fuente, A., Blanco, A., Armengou, J., Aguado, A.: Sustainability based-approach to determine the concrete type and reinforcement configuration of TBM tunnels linings. Case study: Extension line to Barcelona Airport T1, Tunn. Undergr. Sp. Technol. 61, 179–188 (2017). https://doi.org/10.1016/j.tust.2016.10.008

  5. Behfarnia, K., Behravan, A.: Application of high performance polypropylene fibers in concrete lining of water tunnels. Mater. Des. 55, 274–279 (2014). https://doi.org/10.1016/j.matdes.2013.09.075

    Article  Google Scholar 

  6. Fib, International Federation for Structural Concrete fib Model Code for Concrete Structures 2010, Germany (2013)

    Google Scholar 

  7. Breña, S.F., Benouaich, M.A., Kreger, M.E., Wood, S.L.: Fatigue tests of reinforced concrete beams strengthened using carbon fiber-reinforced polymer composites. ACI Struct. J. 102, 305–313 (2005). https://doi.org/10.14359/14282

    Article  Google Scholar 

  8. de Andrade Silva, F., Mobasher, B., Filho, R.D.T.: Fatigue behavior of sisal fiber reinforced cement composites. Mater. Sci. Eng. A. 527, 5507–5513 (2010). https://doi.org/10.1016/j.msea.2010.05.007

  9. Nanni, A.: Fatigue behaviour of steel fiber reinforced concrete. Cem. Concr. Compos. 13, 239–245 (1991). https://doi.org/10.1016/0958-9465(91)90029-H

    Article  Google Scholar 

  10. Tarifa, M., Zhang, X., Ruiz, G., Poveda, E.: Full-scale fatigue tests of precast reinforced concrete slabs for railway tracks. Eng. Struct. 100, 610–621 (2015). https://doi.org/10.1016/j.engstruct.2015.06.016

    Article  Google Scholar 

  11. Ramakrishnan, V., Wu, G.Y., Hosalli, G.: Flexural fatigue strength, endurance limit, and impact strength of fiber reinforced concretes. Transp. Res. Rec. J. Transp. Res. Board. 1226, 17–24 (1989)

    Google Scholar 

  12. Zhang, H., Tian, K.: Properties and mechanism on flexural fatigue of polypropylene fiber reinforced concrete containing slag. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26, 533–540 (2011). https://doi.org/10.1007/s11595-011-0263-8

    Article  Google Scholar 

  13. Johnston, C.D., Zemp, R.W.: Flexural fatigue performance of steel fiber reinforced concrete-influence of fiber content, aspect ratio, and type. ACI Mater. J. 88, 374–383 (1991). https://doi.org/10.14359/1875

    Article  Google Scholar 

  14. de Alencar Monteiro, V.M., Lima, L.R., de Andrade Silva, F.: On the mechanical behavior of polypropylene, steel and hybrid fiber reinforced self-consolidating concrete. Constr. Build. Mater. 188, 280–291 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.103

  15. Oh, B.H., Kim, J.C., Choi, Y.C.: Fracture behavior of concrete members reinforced with structural synthetic fibers. Eng. Fract. Mech. 74, 243–257 (2007). https://doi.org/10.1016/j.engfracmech.2006.01.032

    Article  Google Scholar 

  16. Nagabhushanam, M., Ramakrishnan, V., Vondran, G.: Fatigue strength of fibrillated polypropylene fiber reinforced concretes. Transp. Res. Rec. 1226, 36–47 (1989)

    Google Scholar 

  17. Parant, E., Rossi, P., Boulay, C.: Fatigue behavior of a multi-scale cement composite. Cem. Concr. Res. 37, 264–269 (2007). https://doi.org/10.1016/j.cemconres.2006.04.006

    Article  Google Scholar 

  18. Naaman, A.E., Hammoud, H.: Fatigue characteristics of high performance fiber-reinforced concrete. Cem. Concr. Compos. 20, 353–363 (1998). https://doi.org/10.1016/S0958-9465(98)00004-3

    Article  Google Scholar 

  19. Ramakrishnan, V., Mayer, C., Naaman, A.E.: Cyclic behaviour, fatigue strength, endurance limit and models for fatigue behavior of FRC. Chapter 4, 101–148 (2014)

    Google Scholar 

  20. Zhang, B., Wu, K.: Residual fatigue strength and stiffness of ordinary concrete under bending. Cem. Concr. Res. 27, 115–126 (1997). https://doi.org/10.1016/S0008-8846(96)00183-4

    Article  Google Scholar 

  21. fib Federation Internacionale du beton, Bond of reinforcement in concrete - State-of-the-art report (2000)

    Google Scholar 

  22. Lohaus, L., Oneschkow, N., Wefer, M.: Design model for the fatigue behaviour of normal-strength, high-strength and ultra-high-strength concrete. Struct. Concr. 13, 182–192 (2012). https://doi.org/10.1002/suco.201100054

    Article  Google Scholar 

Download references

Acknowledgments

The first author thanks the Brazilian National Council for Scientific and Technological Development for the scholarship granted (233980/2014-8). This research was enabled by funds provided by the SAES project (BIA2016-78742-C2-1-R) of Spanish Ministerio de Economía, Industria y Competitividad.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 RILEM

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carlesso, D.M., Cavalaro, S.H.P., de la Fuente, A. (2022). Fatigue of Plastic Fibre Reinforced Concrete in Bending: Assessment and Prediction. In: Serna, P., Llano-Torre, A., Martí-Vargas, J.R., Navarro-Gregori, J. (eds) Fibre Reinforced Concrete: Improvements and Innovations II. BEFIB 2021. RILEM Bookseries, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-83719-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83719-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83718-1

  • Online ISBN: 978-3-030-83719-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics