Skip to main content

Comparison of Local Powers of Some Exact Tests for a Common Normal Mean with Unequal Variances

  • Chapter
  • First Online:
Methodology and Applications of Statistics

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

The inferential problem of drawing inference about a common mean \(\mu \) of several independent normal populations with unequal variances has drawn universal attention, and there are many exact and asymptotic tests for testing a null hypothesis \(H_0: \mu =\mu _{0}\) against two-sided alternatives. In this paper we provide a review of some of these exact and asymptotic tests and present theoretical expressions of local powers of the exact tests and a comparison. It turns out that, in the case of equal sample size, a uniform comparison and ordering of the exact tests based on their local power can be carried out even when the variances are unknown. Our observation is that both modified F and modified t tests based on a suitable combination of component F and t statistics perform the best in terms of local power among all exact tests under consideration. An exact test based on inverse normal method of combination of P-values also performs reasonably well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Chang, C.-H., Pal, N.: Testing on the common mean of several normal distributions. Comput. Stat. Data Anal. 53(2), 321–333 (2008)

    Article  MathSciNet  Google Scholar 

  • Cohen, A., Sackrowitz, H.: Testing hypotheses about the common mean of normal distributions. J. Stat. Plann. Inference 9(2), 207–227 (1984)

    Article  MathSciNet  Google Scholar 

  • Eberhardt, K.R., Reeve, C.P., Spiegelman, C.H.: A minimax approach to combining means, with practical examples. Chemom. Intell. Lab. Syst. 5(2), 129–148 (1989)

    Article  Google Scholar 

  • Fairweather, W.R.: A method of obtaining an exact confidence interval for the common mean of several normal populations. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 21(3), 229–233 (1972)

    Google Scholar 

  • Fisher, R.: Statistical methods for research workers. ed. 4, 307 pp., illus. Edinburgh and London (1932)

    Google Scholar 

  • Graybill, F.A., Deal, R.: Combining unbiased estimators. Biometrics 15(4), 543–550 (1959)

    Article  MathSciNet  Google Scholar 

  • Hartung, J.: An alternative method for meta-analysis. Biom. J.: J. Math. Methods Biosci. 41(8), 901–916 (1999)

    Article  MathSciNet  Google Scholar 

  • Hartung, J., Knapp, G., Sinha, B.: Statistical Meta-Analysis with Application. Wiley, New York (2008)

    Book  Google Scholar 

  • Jordan, S.M., Krishnamoorthy, K.: Exact confidence intervals for the common mean of several normal populations. Biometrics 52(1), 77–86 (1996)

    Article  Google Scholar 

  • Khatri, C., Shah, K.: Estimation of location parameters from two linear models under normality. Commun. Stat.-Theory Methods 3(7), 647–663 (1974)

    MathSciNet  MATH  Google Scholar 

  • Lipták, T.: On the combination of independent tests. Magyar Tud Akad Mat Kutato Int Kozl 3, 171–197 (1958)

    MATH  Google Scholar 

  • Malekzadeh, A., Kharrati-Kopaei, M.: Inferences on the common mean of several normal populations under heteroscedasticity. Comput. Stat. 33(3), 1367–1384 (2018)

    Article  MathSciNet  Google Scholar 

  • Meier, P.: Variance of a weighted mean. Biometrics 9(1), 59–73 (1953)

    Article  MathSciNet  Google Scholar 

  • Philip, L., Sun, Y., Sinha, B.K.: On exact confidence intervals for the common mean of several normal populations. J. Stat. Plann. Inference 81(2), 263–277 (1999)

    Article  MathSciNet  Google Scholar 

  • Sinha, B.K.: Unbiased estimation of the variance of the Graybill-Deal estimator of the common mean of several normal populations. Can. J. Stat. 13(3), 243–247 (1985)

    Article  MathSciNet  Google Scholar 

  • Stouffer, S.A., Suchman, E.A., DeVinney, L.C., Star, S.A., Williams, R.M., Jr.: The American Soldier: Adjustment During Army Life, vol. I. Princeton University Press, Princeton (1949)

    Google Scholar 

  • Tippett, L.H.C., et al.: The methods of statistics. The Methods of Statistics (1931)

    Google Scholar 

  • Wilkinson, B.: A statistical consideration in psychological research. Psychol. Bull. 48(2), 156 (1951)

    Article  Google Scholar 

Download references

Acknowledgements

Bimal K. Sinha is thankful to Dr. Tommy Wright at the US Census Bureau for helpful comments and encouragement. We are also thankful to Professor Thomas Mathew and Professor Gaurisankar Datta for some helpful comments. Our sincere thanks are due to two anonymous reviewers for their excellent comments and suggestions which improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal K. Sinha .

Editor information

Editors and Affiliations

Additional information

Disclaimer: This article is released to inform interested parties of ongoing research and to encourage discussion. The views expressed are those of the authors and not those of the U.S. Census Bureau.

Appendix 1: Proofs of Local Powers of Six Exact Tests

Appendix 1: Proofs of Local Powers of Six Exact Tests

We begin by stating a result related to the distribution of a P-value under the alternative hypothesis \(H_0: \mu =\mu _1\), which will be crucial for providing the main results on local power of all tests based on the P-values. We denote \(F_\nu (\cdot )\) to represent the cdf of a central t-distribution with \(\nu \) degrees of freedom.

Lemma 1

$$\begin{aligned} Pr\{P > c |H_1 \} \approx (1 - c) + \frac{n \Delta ^2}{2 \sigma ^2} \xi _{\nu }(c). \end{aligned}$$
(7)

Proof

$$\begin{aligned} Pr\{P> c |H_1 \}= & {} Pr \bigg \{ Pr \bigg [|t_{\nu }|> |\frac{\sqrt{n}(\bar{X} - \mu _0\big )}{S}| \bigg ]> c |H_1 \bigg \} \nonumber \\= & {} Pr \bigg \{1 - \bigg [ F_{\nu } \bigg (|\frac{\sqrt{n}(\bar{X} - \mu _0\big )}{S}| \bigg ) - F_{\nu } \bigg (- |\frac{\sqrt{n}(\bar{X} - \mu _0}{S}| \bigg ) \bigg ] > c |H_1 \bigg \} \nonumber \\= & {} Pr \bigg \{\bigg [ F_{\nu } \bigg (|\frac{\sqrt{n}(\bar{X} - \mu _0\big )}{S}| \bigg ) - F_{\nu } \bigg (- |\frac{\sqrt{n}(\bar{X} - \mu _0}{S}| \bigg ) \bigg ]< 1- c |H_1 \bigg \} \nonumber \\= & {} Pr \bigg \{ |\frac{\sqrt{n}(\bar{X} - \mu _0\big )}{S}|< t_{\nu } \big ( \frac{c}{2} \big ) |H_1 \bigg \} \nonumber \\= & {} Pr \bigg \{-t_{\nu } \big ( \frac{c}{2} \big )< \frac{\sqrt{n}(\bar{X} - \mu _0 \big )}{S}< t_{\nu } \big ( \frac{c}{2} \big ) |H_1 \bigg \} \nonumber \\= & {} Pr \bigg \{-t_{\nu } \big ( \frac{c}{2} \big )< t_{\nu }(\delta ) < t_{\nu } \big ( \frac{c}{2} \big ) |H_1 \nonumber \bigg \} \nonumber \\= & {} \int _{-t_{\nu } (\frac{c}{2})}^{t_{\nu } (\frac{c}{2})} f(x |\nu , \delta )\, dx \quad \quad \quad \bigg [f(x |\nu , \delta ) \sim \text {non-central} \quad t_\nu \bigg (\delta =\frac{\sqrt{n}}{\sigma }\Delta \bigg ) \bigg ] \nonumber \\\approx & {} \int _{-t_{\nu } (\frac{c}{2})}^{t_{\nu } (\frac{c}{2})} \bigg \{ f (x |\nu , 0) + \delta \bigg (\frac{\partial f}{\partial \delta }\bigg )\Bigr |_{\delta = 0} + \frac{\delta ^2}{2} \bigg (\frac{\partial ^2 f}{\partial \delta ^2}\bigg )\Bigr |_{\delta = 0} \bigg \}dx \nonumber \\\approx & {} (1-c) + \frac{n}{2 \sigma ^2} \Delta ^2 \int _{-t_{\nu } (\frac{c}{2})}^{t_{\nu } (\frac{c}{2})} \bigg \{ \frac{\partial ^2 f(x |\nu , \delta )}{\partial \delta ^2} \Bigr |_{\delta = 0} \bigg \} dx \nonumber \\\approx & {} (1 - c) + \frac{n \Delta ^2}{2 \sigma ^2} \xi _{\nu }(c) \quad \nonumber \end{aligned}$$

where \(\xi _{\nu }(c)=\int _{-t_{\nu } (\frac{c}{2})}^{t_{\nu } (\frac{c}{2})} \bigg \{ \frac{\partial ^2 f(x |\nu , \delta )}{\partial \delta ^2} \Bigr |_{\delta = 0} \bigg \} dx= \frac{\Gamma {(\frac{\nu +1}{2})}}{\Gamma {(\frac{\nu }{2})}\sqrt{\nu \pi }} \int _{-t_{\nu } (\frac{c}{2})}^{t_{\nu } (\frac{c}{2})} \bigg (\frac{x^2 - 1}{[\frac{x^2}{\nu }+1]^{\frac{\nu +3}{2}}}\bigg ) dx\). It turns out that \(\xi _{\nu }(c)<0\).    \(\square \)

1.1 I. Local Power of Tippett’s Test [LP(T)]

Recall that Tippett’s test rejects the null hypothesis if \(P_{(1)} < \big [1-(1-\alpha )^{\frac{1}{k}}\big ] = a_{\alpha } \). This leads to

$$\begin{aligned} \text {Power} = 1- \prod _{i=1}^k Pr\big \{P_i > a_{\alpha } |H_1 \big \} . \nonumber \end{aligned}$$

Applying Lemma 1, the local power of Tippett’s test is calculated as follows:

$$\begin{aligned} \text {Local power}\approx & {} 1- \prod _{i=1}^k \bigg [(1- a_{\alpha }) + \frac{\Delta ^2}{2} \bigg (\frac{n_i}{\sigma _i^2} \xi _{\nu _i T}(a_{\alpha }) \bigg ) \bigg ] \nonumber \\\approx & {} 1- \prod _{i=1}^k \bigg [(1- \alpha )^{\frac{1}{k}} + \frac{\Delta ^2}{2} \bigg (\frac{n_i}{\sigma _i^2} \xi _{\nu _i T}(a_{\alpha })\bigg ) \bigg ] \nonumber \\\approx & {} 1- \bigg [(1-\alpha )+(1- \alpha )^{\frac{k-1}{k}} \frac{\Delta ^2}{2} \bigg (\sum _{i=1}^k \frac{n_i}{\sigma _i^2} \xi _{\nu _i T}(a_{\alpha }) \bigg ) \bigg ] \nonumber \\\approx & {} \alpha + (1- \alpha )^{\frac{k-1}{k}} \frac{\Delta ^2}{2} \bigg (\sum _{i=1}^k \frac{n_i}{\sigma _i^2} |\xi _{\nu _i T}(a_{\alpha })| \bigg ) . \nonumber \end{aligned}$$

For the special case \(n_1=\cdots =n_k=n\); \(\nu _1=\cdots =\nu _k=\nu =n-1\) and \( \xi _{\nu _1 T}(a_{\alpha })=\cdots = \xi _{\nu _k T}(a_{\alpha }) = \xi _{\nu T}(a_{\alpha })\), the local power of Tippett’s test reduces to

$$\begin{aligned} \text {LP(T)}\approx & {} \alpha + (1- \alpha )^{\frac{k-1}{k}} \frac{n \Delta ^2}{2} |\xi _{\nu T}(a_{\alpha })| \bigg (\sum _{i=1}^k \frac{1}{\sigma _i^2} \bigg ) \nonumber \\= & {} \alpha + \bigg [ \frac{n \Delta ^2}{2} \Psi \bigg ] \bigg [(1-\alpha )^{\frac{k-1}{k}}\bigg ] |\xi _{\nu T}(a_{\alpha })| \quad \text {where} \quad \Psi =\sum _{i=1}^k \frac{1}{\sigma _i^2}. \nonumber \end{aligned}$$

1.2 II. Local Power of Wilkinson’s Test \([LP(W_r)]\)

Using \(r^{th}\) smallest p-value \(P_{(r)}\) as a test statistic, the null hypothesis will be rejected if \( P_{(r)} < d_{r, \alpha }\), where \(P_{(r)}\) \(\sim \) Beta\([r, k-r+1]\) under \(H_0\) and \(d_{r, \alpha }\) satisfies \(\alpha =Pr\{ P_{(r)} < d_{r, \alpha } | H_0 \}=\int _0^{d_{r, \alpha }} \frac{u^{r-1} (1-u)^{k-r}}{B[r, k-r+1]}du\). This leads to

$$\begin{aligned} \text {Power}= & {} Pr[P_{(r)}< d_{r, \alpha } |H_1 ] \nonumber \\= & {} \sum _{l=r}^k Pr \{ P_{i_{1}} , \ldots , P_{i_{l}}< d_{r, \alpha } < P_{i_{l+1}} , \ldots , P_{i_{k}} |H_1 \} \nonumber \end{aligned}$$

where \((i_1, \cdots , i_l, i_{l+1}, \cdots , i_k)\) is a permutation of \((1, \cdots , k)\). Applying Lemma 1, we get

$$\begin{aligned} Pr \{ P_{i_{1}} ,&\ldots&, P_{i_{l}}< d_{r, \alpha } < P_{i_{l+1}} , \ldots , P_{i_{k}} |H_1 \} \nonumber \\\approx & {} \bigg \{ \prod _{j=1}^{l} \big ( d_{r, \alpha } - \frac{n_{i_j} \Delta ^2}{2 \sigma _{i_j}^2} \xi _{i_j W}(d_{r, \alpha }) \big ) \bigg \} \bigg \{ \prod _{j=l+1}^{k} \big (1- d_{r, \alpha } + \frac{n_{i_j} \Delta ^2}{2 \sigma _{i_j}^2} \xi _{i_j W}({d_{r, \alpha } }) \big ) \bigg \} \nonumber \\\approx & {} \bigg \{ d_{r, \alpha }^{l} - d_{r, \alpha }^{l-1} \frac{\Delta ^2}{2} \bigg (\sum _{j=1}^l \frac{n_{i_j}}{\sigma _{i_j}^2}\xi _{i_j W}({d_{r, \alpha } }) \bigg ) \bigg \} \times \nonumber \\&\bigg \{(1- d_{r, \alpha })^{k-l} + (1- d_{r, \alpha })^{k-l-1} \frac{\Delta ^2}{2} \bigg (\sum _{j=l+1}^k \frac{n_{i_j}}{\sigma _{i_j}^2}\xi _{i_j W}({d_{r, \alpha } }) \bigg ) \bigg \} \nonumber \\\approx & {} d_{r, \alpha }^{l}(1-d_{r, \alpha })^{k-l} + \frac{\Delta ^2}{2} \bigg \{ d_{r, \alpha }^{l} (1 - d_{r, \alpha })^{k-l-1} \bigg (\sum _{j=l+1}^k \frac{n_{i_j}}{\sigma _{i_j}^2}\xi _{i_j W}({d_{r, \alpha } }) \bigg ) \nonumber \\&- d_{r, \alpha }^{l-1} (1 - d_{r, \alpha })^{k-l} \bigg (\sum _{j=1}^l \frac{n_{i_j}}{\sigma _{i_j}^2}\xi _{i_j W}(a_{d_{r, \alpha } }) \bigg ) \bigg \}. \nonumber \end{aligned}$$

Permuting \((i_1, \ldots , i_k)\) over \((1, \ldots , k)\), we get for any fixed l \((r\le l \le k)\),

$$\begin{aligned} \text {1st term}&= {{k} \atopwithdelims (){l}} d_{r, \alpha }^{l} (1 - d_{r, \alpha })^{k-l} \nonumber \\ \text {2nd term}&= \frac{\Delta ^2}{2} d_{r, \alpha }^{l} (1 - d_{r, \alpha })^{k-l-1} \bigg \{ {{k-1} \atopwithdelims (){k-l-1}} \bigg (\sum _{i=1}^k \frac{n_i}{\sigma _{i}^2}\xi _{i W}({d_{r, \alpha } }) \bigg ) \bigg \} \nonumber \\ \text {3rd term}&= - \frac{\Delta ^2}{2} d_{r, \alpha }^{l-1} (1 - d_{r, \alpha })^{k- l} \bigg \{ {{k-1} \atopwithdelims (){l-1}} \bigg (\sum _{i=1}^k \frac{n_i}{\sigma _{i}^2}\xi _{i W}({d_{r, \alpha } }) \bigg ) \bigg \}. \nonumber \end{aligned}$$

The second term above follows upon noting that when \(\big [\sum _{j=l+1}^k \frac{n_{i_j}}{\sigma _{i_j}^2}\xi _{i_j W}({d_{r, \alpha } }) \big ]\) is permuted over \((i_{l+1}< \cdots <i_{k})\) \(\subset (1, \ldots , k)\), each term \(\frac{n_{i}}{\sigma _{i}^2}\xi _{i W}({d_{r, \alpha } })\) appears exactly \({{k-1} \atopwithdelims (){k- l -1}}\) times, for each \(i=1,\cdots , k\). The 3rd term, likewise, follows upon noting that when \(\big [\sum _{j=1}^l \frac{n_{i_j}}{\sigma _{i_j}^2}\xi _{i_j W}({d_{r, \alpha } }) \big ]\) is permuted over \((i_{1}< \cdots <i_{l})\) \(\subset (1, \ldots , k)\), each term \(\frac{n_{i}}{\sigma _{i}^2}\xi _{i W}({d_{r, \alpha } })\) appears exactly \({{k-1} \atopwithdelims (){l -1}}\) times, for each \(i=1,\cdots , k\).

Adding the above three terms and simplifying, we get

$$\begin{aligned} LP(W_r) \approx \alpha + {{k-1} \atopwithdelims (){r-1}} d_{r;\alpha }^{r-1} (1 - d_{r;\alpha })^{k-r} \frac{\Delta ^2}{2} \bigg [\sum _{i=1}^k \frac{n_{i}}{\sigma _{i}^2} |\xi _{i W}({d_{r, \alpha } })| \bigg ]. \nonumber \end{aligned}$$

For the special case \(n_1=\cdots =n_k=n\); \(\nu _1=\cdots =\nu _k=\nu =n-1\) and \( \xi _{\nu _1 W}(d_{r;\alpha })=\cdots = \xi _{\nu _k W}(d_{r;\alpha }) = \xi _{\nu W}(d_{r;\alpha })\), the local power of Wilkinson’s test reduces to

$$\begin{aligned} LP(W_r)\approx & {} \alpha + {{k-1} \atopwithdelims (){r-1}} d_{r;\alpha }^{r-1} (1 - d_{r;\alpha })^{k-r} \frac{n \Delta ^2}{2} |\xi _{i W}({d_{r, \alpha } })| \bigg (\sum _{i=1}^k \frac{1}{\sigma _{i}^2} \bigg ) \nonumber \\= & {} \alpha + \bigg [\frac{n \Delta ^2}{2} \Psi \bigg ] {{k-1} \atopwithdelims (){r-1}} |\xi _{\nu W}(d_{r;\alpha })| d_{r;\alpha }^{r-1} (1 - d_{r;\alpha })^{k-r} \quad \text {where} \quad \Psi =\sum _{i=1}^k \frac{1}{\sigma _i^2}. \nonumber \end{aligned}$$

1.3 III. Local Power of Inverse Normal Test [LP(INN)]

Under this test, the null hypothesis will be rejected if \( \frac{1}{\sqrt{k}}\sum _{i=1}^k U_i < - z_{\alpha } \), where \(U_i=\Phi ^{-1} (P_i)\), \(\Phi ^{-1}\) is the inverse cdf and \(z_{\alpha }\) is the upper \(\alpha \) level critical value of a standard normal distribution. This leads to

$$\begin{aligned} \text {Power} = Pr\bigg \{ \frac{1}{\sqrt{k}}\sum _{i=1}^k U_i < - z_{\alpha } |H_1 \bigg \}. \nonumber \end{aligned}$$

First, let us determine the pdf of U under \(H_1\), \(f_{H_1}(u)\), via its cdf \(F_{H_1}(u)= Pr \{ U \le u |H_1\}\).

$$\begin{aligned} Pr \{ U \le u |H_1 \}= & {} Pr \{ \Phi (U) \le \Phi (u) |H_1 \} \nonumber \\= & {} Pr \{ P \le \Phi (u) |H_1\} \quad \big [ U=\Phi ^{-1} (P) \implies P=\Phi (U) \big ]\nonumber \\= & {} 1 - Pr \{ P > \Phi (u) |H_1\} \nonumber \\\approx & {} 1- \bigg [ [1 - \Phi (u)] + \frac{n\Delta ^2}{2 \sigma ^2} \big [\xi _{\nu }(c) \big ]_{c=\Phi (u)} \bigg ] \quad \quad \big [\text {upon applying Lemma 1}\big ]\nonumber \\\approx & {} \Phi (u) - \frac{n\Delta ^2}{2 \sigma ^2} \big [\xi _{\nu }(c) \big ]_{c=\Phi (u)} . \nonumber \\ \text {This implies} \nonumber \\ f_{H_1}(u)\approx & {} \frac{d}{du} \bigg [\Phi (u) - \frac{n\Delta ^2}{2 \sigma ^2} \big [\xi _{\nu }(c) \big ]_{c=\Phi (u)} \bigg ]\nonumber \\\approx & {} \phi (u)\bigg [1 - \frac{n\Delta ^2}{2 \sigma ^2} \bigg ( \frac{d}{dc} \big [\xi _{\nu }(c) \big ]_{c=\Phi (u)} \bigg ) \bigg ]\nonumber \\\approx & {} \frac{\phi (u)\big [1 + \frac{n \nu \Delta ^2}{2 \sigma ^2} Q_\nu (u) \big ]}{{1 + \frac{n \nu \Delta ^2}{2 \sigma ^2} \int _{-\infty }^{\infty } \phi (u)Q_\nu (u) du}}, \quad Q_\nu (u)=\bigg [\frac{x^2 - 1}{x^2 +\nu } \bigg ]_{x=t_\nu (\frac{c}{2}), \quad c=\Phi (u)}. \nonumber \end{aligned}$$

Here we have used the fact that \(\frac{d}{du}[\xi _\nu (c)]=\frac{d}{dc}[\xi _\nu (c)]\frac{dc}{du}\), \(\frac{d}{dc}[\xi _\nu (c)]=-\nu Q_\nu (\cdot )\) given below in Eq. (10), upon simplification, and \(\frac{dc}{du}=\phi (u)\). The denominator in the last expression is a normalizing constant.

$$\begin{aligned} \frac{d}{dc} \xi _{\nu }(c)= & {} \frac{d}{dc} \bigg [\int _{-t_{\nu } (\frac{c}{2})}^{t_{\nu } (\frac{c}{2})} f^*(x) dx \bigg ] \quad \bigg [f^*(x)= \frac{\partial ^2 f(x |\nu , \delta )}{\partial \delta ^2} \Bigr |_{\delta = 0}=\frac{\Gamma {(\frac{\nu +1}{2})}}{\Gamma {(\frac{\nu }{2})}\sqrt{\nu \pi }} \bigg (\frac{x^2 - 1}{[\frac{x^2}{\nu }+1]^{\frac{\nu +3}{2}}}\bigg ) \bigg ]\nonumber \\= & {} \frac{d}{dc} \big [ F^*\big ({t_{\nu } (c/2)}\big ) - F^*\big ({-t_{\nu } (c/2)}\big ) \big ] \nonumber \\= & {} f^*\big ({t_{\nu } (c/2)}\big )\big [\frac{d}{dc} {t_{\nu } (c/2)} \big ] + f^*\big ({-t_{\nu } (c/2)}\big )\big [\frac{d}{dc} {t_{\nu } (c/2)} \big ]\nonumber \\= & {} \frac{d}{dc} {t_{\nu } (c/2)} \big [f^*\big ({t_{\nu } (c/2)}\big ) + f^*\big ({-t_{\nu } (c/2)}\big ) \big ] \quad f^*(x) \text { is a symmetric distribution} \nonumber \\= & {} 2f^*\big ({t_{\nu } (c/2)}\big ) \big [ \frac{d}{dc} {t_{\nu } (c/2)} \big ] . \end{aligned}$$
(8)

Further \( \big [ \frac{d}{dc} {t_{\nu } (c/2)} \big ]\) can be expressed in terms of \(f\big ({t_{\nu } (c/2)}\big )\) as follows.

$$\begin{aligned} \frac{c}{2}= & {} Pr\big [ t_{\nu } \ge t_{\nu }(c/2) \big ] \nonumber \\= & {} \int _{t_{\nu }(c/2)}^{\infty } f_{\nu }(x) dx = 1- F\big ({t_{\nu } (c/2)}\big ) \quad \bigg [ f_{\nu }(x) = \frac{\Gamma {(\frac{\nu +1}{2})}}{\sqrt{\nu \pi } \Gamma {(\frac{\nu }{2})}} \bigg ( 1 + \frac{x^2}{\nu } \bigg )^{-\frac{\nu +1}{2}} \bigg ] \nonumber \\ \frac{d}{dc}\big [ \frac{c}{2}\big ]= & {} \frac{d}{dc}\big [ 1- F\big ({t_{\nu } (c/2)}\big ) \big ]\nonumber \\= & {} - f\big ({t_{\nu } (c/2)}\big )\big [\frac{d}{dc} {t_{\nu } (c/2)} \big ] \nonumber \\ \implies \frac{d}{dc} {t_{\nu } (c/2)}= & {} \frac{-1}{2f\big ({t_{\nu } (c/2)}\big )}. \end{aligned}$$
(9)

Replacing Eq. (9) in (8) results in:

$$\begin{aligned} \frac{d}{dc} \xi _{\nu }(c)= & {} 2 f^*\big ({t_{\nu } (c/2)}\big )\bigg [ \frac{-1}{2 f\big ({t_{\nu } (c/2)}\big )} \bigg ] = -\frac{f^*\big ({t_{\nu } (c/2)}\big )}{f\big ({t_{\nu } (c/2)}\big )} \nonumber \\= & {} -\nu \bigg [\frac{x^2 - 1}{x^2 +\nu } \bigg ]_{x=t_\nu (\frac{c}{2}), \quad c=\Phi (u)}. \end{aligned}$$
(10)

Let us define \(A_\nu \), \(B_\nu \) and \(C_\nu \) as \(A_\nu =\int _{-\infty }^{\infty } u \phi (u) Q_\nu (u) du\), \(B_\nu =\int _{-\infty }^{\infty } u^2 \phi (u) Q_\nu (u) du\) and \(C_\nu =\int _{-\infty }^{\infty } \phi (u) Q_\nu (u) du\). Using these three quantities, we now approximate the distribution of U as

$$\begin{aligned} U\sim & {} N[E(U), Var(U)] \quad \text {where} \quad E(U)=\int _{-\infty }^{\infty } u f_{H_1}(u) du \approx \frac{n \nu \Delta ^2}{2 \sigma ^2} A_\nu \quad \text {and} \nonumber \\&Var(U)= \int _{-\infty }^{\infty } u^2 f_{H_1}(u) du \approx 1 + \frac{n \nu \Delta ^2}{2 \sigma ^2} [B_\nu -C_\nu ] . \nonumber \end{aligned}$$

This leads to

$$\begin{aligned} \frac{1}{\sqrt{k}}\sum _{i=1}^k U_i\sim & {} N\bigg [\frac{1}{\sqrt{k}} \sum _{i=1}^k E(U_i), \frac{1}{k} \sum _{i=1}^k Var(U_i) \bigg ] \nonumber \\\sim & {} N\bigg [\frac{\Delta ^2}{\sqrt{k}} \delta _1, 1+\frac{\Delta ^2}{k} \delta _2\bigg ] \nonumber \\ \text {where}&\delta _1&=\sum _{i=1}^k {\frac{n_i \nu _i }{2 \sigma _i^2}}A_{\nu _i} \quad \text {and} \quad \delta _2=\sum _{i=1}^k {\frac{n_i \nu _i }{2 \sigma _i^2}}[B_{\nu _i}-C_{\nu _i}]. \nonumber \end{aligned}$$

Using the above result, the local power of inverse normal test is obtained by approximating its \(Power = Pr\bigg \{ \frac{1}{\sqrt{k}}\sum _{i=1}^k U_i < - z_{\alpha } |H_1 \bigg \}\) as

$$\begin{aligned} \text {Local power (INN)}\approx & {} \Phi \bigg [ \frac{- z_\alpha - \frac{\Delta ^2}{\sqrt{k}} \delta _1}{\sqrt{1+\frac{\Delta ^2}{k} \delta _2}}\bigg ]\nonumber \\\approx & {} \Phi \bigg [- z_\alpha - \frac{\Delta ^2}{\sqrt{k}} \delta _1 + \frac{z_\alpha }{2}\frac{\Delta ^2}{k} \delta _2\bigg ]\nonumber \\\approx & {} \Phi \bigg [- z_\alpha + \frac{\Delta ^2}{\sqrt{k}}\bigg (\frac{z_\alpha }{2\sqrt{k}} \delta _2 - \delta _1 \bigg ) \bigg ]\nonumber \\\approx & {} \Phi (- z_\alpha ) + \frac{\Delta ^2}{\sqrt{k}}\phi (z_\alpha )\bigg [\frac{z_\alpha }{2\sqrt{k}} \delta _2 - \delta _1 \bigg ] \nonumber \\\approx & {} \alpha + \frac{\Delta ^2}{\sqrt{k}} \phi (z_\alpha ) \bigg [\frac{z_\alpha }{2\sqrt{k}} \delta _2 - \delta _1 \bigg ] . \nonumber \end{aligned}$$

Substituting back the expressions for \(\delta _1\) and \(\delta _2\) results in

$$\begin{aligned} LP(INN)\approx & {} \alpha + \frac{\Delta ^2}{2 \sqrt{k}} \phi (z_\alpha ) \sum _{i=1}^k \frac{n_i \nu _i}{\sigma _i^2} \bigg [\frac{z_\alpha [B_{\nu _i}-C_{\nu _i}]}{2\sqrt{k}} - A_{\nu _i} \bigg ]. \nonumber \end{aligned}$$

For the special case \(n_1=\cdots =n_k=n\) and \(\nu _1=\cdots =\nu _k=\nu =n-1\), the local power of Inverse Normal test reduces to

$$\begin{aligned} LP(INN)\approx & {} \alpha + \frac{n \nu \Delta ^2}{2 \sqrt{k}} \phi (z_\alpha ) \bigg (\sum _{i=1}^k \frac{1}{\sigma _i^2} \bigg )\bigg [ \frac{z_\alpha [B_{\nu }-C_{\nu }]}{2\sqrt{k}} - A_{\nu } \bigg ] \nonumber \\= & {} \alpha + \bigg [\frac{n \Delta ^2}{2} \Psi \bigg ] \frac{\nu }{\sqrt{k}} \phi {(z_{\alpha })}\bigg [\frac{z_{\alpha } [B_{\nu } - C_{\nu }]}{2 \sqrt{k}} - A_{\nu }\bigg ] \quad \text {where} \quad \Psi =\sum _{i=1}^k \frac{1}{\sigma _i^2}. \nonumber \end{aligned}$$

1.4 IV. Local Power of Fisher’s Test [LP(F)]

According to Fisher’s exact test, the null hypothesis will be rejected if \( \sum _{i=1}^k U_i > \chi _{2k; \alpha }^2\), where \(U_i= -2 \ln {(P_i)} \), and \(\chi _{2k; \alpha }^2\) is the upper \(\alpha \) level critical value of a \(\chi ^2\)-distribution with 2k degrees of freedom. This leads to

$$\begin{aligned} \text {Power} = Pr\bigg \{\sum _{i=1}^k U_i > \chi _{2k; \alpha }^2 |H_1 \bigg \}. \nonumber \end{aligned}$$

In a similar way to the inverse normal test in Appendix III, first let us determine the pdf of U under \(H_1\), \(g_{H_1}(u)\), via its cdf \(G_{H_1}(u)= Pr \{ U \le u |H_1\}\).

$$\begin{aligned} Pr \{ U \le u |H_1 \}= & {} Pr \{ -2 \ln {(P)} \le u |H_1\} \nonumber \\= & {} Pr \{ \ln {(P)}> -u/2 |H_1\} \nonumber \\= & {} Pr \{ P > \exp {(-u/2)} |H_1\} \nonumber \\\approx & {} [1 - \exp {(-u/2)} ] + \frac{n\Delta ^2}{2 \sigma ^2} \big [\xi _{\nu }(c) \big ]_{c=\exp {(-u/2)}} \quad \big [\text {upon applying Lemma 1}\big ]. \nonumber \\ \text {This implies} \nonumber \\ g_{H_1}(u)\approx & {} \frac{d}{du} \bigg [1 - \exp {(-u/2)} + \frac{n\Delta ^2}{2 \sigma ^2} \big [\xi _{\nu }(c) \big ]_{c=\exp {(-u/2)}} \bigg ]\nonumber \\\approx & {} \frac{1}{2} \exp {(-u/2)} + \big [\frac{n\Delta ^2}{2 \sigma ^2}\big ] \frac{d}{du} \big [\xi _{\nu }(c) \big ]_{c=\exp {(-u/2)}} \nonumber \\\approx & {} \frac{1}{2} \exp {(-u/2)} - \frac{1}{2}\exp {(-u/2)} \big [\frac{n\Delta ^2}{2 \sigma ^2}\big ] \frac{d}{dc} \big [\xi _{\nu }(c) \big ]_{c=\exp {(-u/2)}} \nonumber \\\approx & {} \frac{\frac{1}{2} \exp {(-u/2)} \big [1 + \frac{n \nu \Delta ^2}{2 \sigma ^2} \Psi _\nu (u) \big ]}{{1 + \frac{n \nu \Delta ^2}{2 \sigma ^2} \big [ \int _{0}^{\infty } \frac{1}{2}\exp {(-u/2)} \Psi _\nu (u) du\big ]}}, \quad \Psi _\nu (u){=}\bigg [\frac{x^2 - 1}{x^2 +\nu } \bigg ]_{x=t_\nu (\frac{c}{2}), \quad c=\exp {(-u/2)}} .\nonumber \end{aligned}$$

Here we have used the fact that \(\frac{d}{du}[\xi _\nu (c)]=\frac{d}{dc}[\xi _\nu (c)]\frac{dc}{du}\), \(\frac{d}{dc}[\xi _\nu (c)]=-\nu \Psi _\nu (\cdot )\) given in Eq. (10), upon simplification, and \(\frac{dc}{du}= - \frac{1}{2}\exp {(-u/2)}\). The denominator in the last expression is a normalizing constant.

Define \(D_0=\int _{0}^{\infty } \frac{1}{\Gamma {(k)}}\exp {(-u)} u^{k-1} \ln {(u)} du\) and \(D_\nu =\int _{0}^{\infty } \frac{1}{2}\exp {(-u/2)} (u-2)\Psi _\nu (u) du\). Using these quantities, we can now approximate the distribution of U as

$$\begin{aligned} U\sim & {} Gamma[\beta =2, \gamma _\nu ] \quad \text {where} \quad \gamma _\nu = \big [1 + \frac{n \nu \Delta ^2}{4\sigma ^2} D_\nu \big ]. \nonumber \end{aligned}$$

Here Gamma\([\beta , \gamma _\nu ]\) stands for a Gamma random variable with scale parameter \(\beta \) and shape parameter \(\gamma _\nu \) with the pdf \(f(x)=[e^{-x/\beta }x^{\gamma _\nu -1}]/[\beta ^{\gamma _\nu }\Gamma (\gamma _\nu )]\). By the additive property of independent \(Gamma[\beta =2, \gamma _{\nu _1}], \cdots , Gamma[\beta =2, \gamma _{\nu _k}]\) corresponding to \(U_1, \cdots , U_k\), we readily get the approximate distribution of \( (U_1+\cdots +U_k)\) as

$$\begin{aligned} \sum _{i=1}^k U_i\sim & {} Gamma\big [\beta =2, k + \Delta ^2 A \big ] \quad \text {where} \quad A= \frac{1}{4} \sum _{i=1}^k{\frac{n_i \nu _i}{\sigma _i^2}}D_{\nu _i}. \nonumber \end{aligned}$$

The local power of Fisher’s test under \(H_1\) is then obtained as follows:

$$\begin{aligned} \text {Local power (F)}\approx & {} \int _{\chi _{2k; \alpha }^2}^{\infty } \frac{\exp {(-t/2)} t^{k+A\Delta ^2 -1}}{2^{k+A\Delta ^2} \Gamma {(k+A\Delta ^2)}}dt \quad \bigg [\text {since} \quad \sum _{i=1}^k U_i {\sim } Gamma\big [\beta =2, k + \Delta ^2 A \big ] \bigg ]\nonumber \\= & {} Q(\Delta ^2). \nonumber \end{aligned}$$

We now expand \(Q(\Delta ^2)\) around \(\Delta ^2=0\) to get

$$\begin{aligned} \text {Local power (F)}\approx & {} \alpha + \Delta ^2 \int _{\chi _{2k; \alpha }^2}^{\infty } \frac{\exp {(-t/2)} t^{k-1}}{2^k} \bigg [\frac{\partial }{\partial \Delta ^2} \bigg (\frac{(t/2)^{A\Delta ^2}}{\Gamma {(k+A\Delta ^2)}} \bigg )_{\Delta ^2=0} \bigg ]dt \nonumber \\\approx & {} \alpha + \Delta ^2 \int _{\chi _{2k; \alpha }^2}^{\infty } \frac{\exp {(-t/2)} t^{k-1}}{2^k} \bigg [\frac{A \ln {(t/2})}{\Gamma {(k)}} - \frac{A \int _0^\infty \exp {(-u)} u^{k-1} \ln {(u)} du}{\Gamma ^2{(k)}} \bigg ]dt \nonumber \\\approx & {} \alpha + \Delta ^2 A \int _{\chi _{2k; \alpha }^2}^{\infty } \frac{\exp {(-t/2)} t^{k-1}}{2^k \Gamma {(k)}} \bigg [\ln {(t/2}) - \frac{ \int _0^\infty \exp {(-u)} u^{k-1} \ln {(u)} du}{\Gamma {(k)}} \bigg ]dt \nonumber \\\approx & {} \alpha + \Delta ^2 A \bigg [ E\bigg \{ \big \{\ln (T/2) \big \} I_{\{T \ge \chi _{2k; \alpha }^2\}}\bigg \}_{T\sim \chi ^2_{2k}} - \alpha D_0\bigg ]. \nonumber \end{aligned}$$

Substituting back the expressions for A results in

$$\begin{aligned} LP (F) \approx \alpha + \frac{\Delta ^2}{2} \bigg [\sum _{i=1}^k{\frac{n_i \nu _i}{2\sigma _i^2}}D_{\nu _i} \bigg ] \bigg [ E\bigg \{ \big \{\ln (T/2) \big \} I_{\{T \ge \chi _{2k; \alpha }^2\}}\bigg \}_{T\sim \chi ^2_{2k}} - \alpha D_0\bigg ] . \nonumber \end{aligned}$$

For the special case \(n_1=\cdots =n_k=n\) and \(\nu _1=\cdots =\nu _k=\nu =n-1\), the local power of Fisher’s test reduces to

$$\begin{aligned} LP(F)\approx & {} \alpha + \frac{n\Delta ^2}{2} \nu D_\nu \bigg [\sum _{i=1}^k{\frac{1}{2\sigma _i^2}}\bigg ] \bigg [ E\bigg \{ \big \{\ln (T/2) \big \} I_{\{T \ge \chi _{2k; \alpha }^2\}}\bigg \}_{T\sim \chi ^2_{2k}} - \alpha D_0\bigg ] \nonumber \\= & {} \alpha + \bigg [\frac{n \Delta ^2}{2} \Psi \bigg ] \frac{\nu D_\nu }{2} \bigg [ E\bigg \{ \big \{\ln (T/2) \big \} I_{\{T \ge \chi _{2k; \alpha }^2\}}\bigg \}_{T\sim \chi ^2_{2k}} - \alpha D_0\bigg ] \quad \text {where} \quad \Psi =\sum _{i=1}^k \frac{1}{\sigma _i^2}. \nonumber \end{aligned}$$

1.5 V. Local Power of a Modified t Test \([LP(T_1)]\)

Using this exact test based on a modified t, the null hypothesis \(H_0:\mu =\mu _0\) will be rejected if \(T_1 > d_{1\alpha }\), where \(T_1= \sum _{i=1}^k{w_{1i}} |t_i|\), \(w_{1i} \propto [Var(|t_i|)]^{-1}, Var(|t_i|)= [\nu _i (\nu _i -2)^{-1}] - \big ([\Gamma (\frac{\nu _i - 1}{2}) \sqrt{\nu _i}][\Gamma (\frac{\nu _i}{2})\sqrt{\pi }]^{-1}\big )^2\), and \(Pr\{T_1 > d_{1\alpha } | H_0 \}=\alpha \). In applications \(d_{1\alpha }\) is computed by simulation. This leads to

$$\begin{aligned} \text {Power of }T_{1}= & {} Pr\bigg \{ \sum _{i=1}^k w_{1i} |t_i|> d_{1\alpha } |H_1 \bigg \} \nonumber \\= & {} \idotsint \limits _{\sum _{i=1}^k w_{1i} |t_i|> d_{1\alpha }} \prod _{i=1}^k \big [ f_{\nu _i, \delta _i}{(t_i)} \big ] \mathrm {d} t_i \quad \big [\delta _i=\frac{\sqrt{n_i} \Delta }{\sigma _i} \big ] \nonumber \\\approx & {} \idotsint \limits _{\sum _{i=1}^k w_{1i}|t_i|> d_{1\alpha }} \prod _{i=1}^k \bigg [ f_{\nu _i}(t_i) + \delta _i \frac{\partial f_{\nu _i, \delta _i}{(t_i)}}{\partial \delta _i}\Bigr |_{\delta _i= 0} + \frac{\delta _i^2}{2} \frac{\partial ^2 f_{\nu _i, \delta _i}{(t_i)}}{\partial \delta _i^2}\Bigr |_{\delta _i= 0}\bigg ] \mathrm {d} t_i \nonumber \\\approx & {} \alpha + \sum _{j=1}^k \frac{\delta _j^2 }{2} \bigg [\idotsint \limits _{\sum _{i=1}^k w_{1i}|t_i|> d_{1\alpha }} \bigg \{\prod _{i=1}^k f_{\nu _i}(t_i)\bigg \} \bigg \{ \frac{\frac{\partial ^2 f_{\nu _j, \delta _j}{(t_j)}}{\partial \delta ^2}\big |_{\delta = 0}}{f_{\nu _j}(t_j)} \bigg \}\bigg ] \prod _{i=1}^k\mathrm {d} t_i \nonumber \\\approx & {} \alpha + \sum _{j=1}^k \frac{\delta _j^2 }{2} \bigg [E_{H_0}\bigg [ \bigg \{\frac{\frac{\partial ^2 f_{\nu _j, \delta _j}(t_j)}{\partial \delta _j^2}\Bigr |_{\delta _j= 0}}{f_{\nu _j}(t_j)} \bigg \} I_{\{\sum _{i=1}^k w_{1i}|t_i|> d_{1\alpha }\}}\bigg ] \bigg ] \nonumber \\\approx & {} \alpha + \sum _{j=1}^k \frac{\delta _j^2 }{2} \bigg [E_{H_0}\bigg [ \bigg \{\frac{(t_j^2 - 1)\nu _j}{t_j^2 + \nu _j} \bigg \} I_{\{\sum _{i=1}^k w_{1i}|t_i|> d_{1\alpha }\}} |H_0 \bigg ] \bigg ] \nonumber \\\approx & {} \alpha + \frac{\Delta ^2}{2}\bigg (\sum _{j=1}^k \frac{n_j }{\sigma ^2_j} E_{H_0}\bigg [ \bigg \{\frac{(t_j^2 - 1)\nu _j}{t_j^2 + \nu _j} \bigg \} I_{\{\sum _{i=1}^k w_{1i}|t_i| > d_1\alpha \}}\bigg ] \bigg ) \quad \text {using} \quad \bigg [ \delta _j=\frac{\sqrt{n_j} \Delta }{\sigma _j} \bigg ]. \nonumber \end{aligned}$$

\(E_{H_0}[\cdot ]\) above is computed by simulation. It is easy to verify from Sect. 3 that the product terms \(\bigg \{ \frac{\partial f_{\nu _i, \delta _i}(t_i) }{\partial \delta _i} \Bigr |_{\delta _i= 0}\bigg \} \times \bigg \{ \frac{\partial f_{\nu _j, \delta _j}(t_j) }{\partial \delta _j} \Bigr |_{\delta _j= 0}\bigg \}\) involve \((t_i t_j)\), apart from \(t_i^2\) and \(t_j^2\), whose integral over \(\{\sum _{i=1}^k w_{1i}|t_i| > d_{1\alpha }\}\) under \(H_0\) is zero.

For the special case \(n_1=\cdots =n_k=n\) and \(\nu _1=\cdots =\nu _k=\nu =n-1\) which implies \(w_{11}=\cdots =w_{1k}=1\), the local power of this exact test based on modified t reduces to

$$\begin{aligned} LP(T_1)\approx & {} \alpha + \frac{n \Delta ^2}{2} \bigg (\sum _{j=1}^k \frac{1 }{\sigma ^2_j} \bigg ) E_{H_0}\bigg [ \bigg \{\frac{(t_1^2 - 1)\nu }{t_1^2 + \nu } \bigg \} I_{\{\sum _{i=1}^k |t_i|> d_1\alpha \}}\bigg ] \nonumber \\= & {} \alpha + \bigg [\frac{n \Delta ^2}{2} \Psi \bigg ] E_{H_0} \bigg [ \bigg \{\frac{(t_1^2-1)\nu }{t_1^2+\nu } \bigg \} I_{\{\sum _{i=1}^{k} |t_i| > d_{1\alpha }\}} \bigg ] \quad \text {where} \quad \Psi =\sum _{j=1}^k \frac{1}{\sigma _j^2}. \nonumber \end{aligned}$$

1.6 VI. Local Power of a Modified F Test \([LP(T_2)]\)

According to this exact test based on a modified F, the null hypothesis \(H_0:\mu =\mu _0\) will be rejected if \(T_2 > d_{2\alpha }\), where \(T_2=\sum _{i=1}^k{w_{2i}}F_i\), \(F_i \sim F(1, \nu _i)\), \(w_{2i} \propto [Var(F_i)]^{-1}=[2\nu _i^2 (\nu _i-1)]^{-1}[(\nu _i - 2)^2 (\nu _i - 4)]\), and \(Pr\{T_2 > d_{2\alpha } | H_0 \}=\alpha \). In applications \(d_{2\alpha }\) is computed by simulation. This leads to

$$\begin{aligned} \text {Power of }T_{2}= & {} Pr\bigg \{ \sum _{i=1}^k w_{2i}F_i> d_{2\alpha } |H_1 \bigg \} \nonumber \\= & {} \idotsint \limits _{ \sum _{i=1}^k w_{2i}F_i > d_{2\alpha }} \prod _{i=1}^k \big [ f_{\nu _i, \lambda _i}{(F_i)} \big ] \mathrm {d} F_i \quad \bigg [f_{\nu , \lambda }{(F)} \sim \text {non-central}\quad F_{1,\nu }\bigg (\lambda =\frac{n\Delta ^2}{\sigma ^2}\bigg ) \bigg ]. \nonumber \end{aligned}$$

Note that \(f_{\nu , \lambda }(F)\) and its local expansion around \(\lambda =0\) are give by

$$\begin{aligned} f_{\nu ,\lambda }(F)= & {} \exp {(-\frac{\lambda }{2})} \sum _{j=0}^\infty \frac{(\frac{\lambda }{2})^j}{j!}\bigg [\frac{(\frac{\nu _1}{\nu _2})^{\frac{\nu _1+2j}{2}} \Gamma {(\frac{\nu _1+\nu _2+2j}{2})}}{\Gamma {(\frac{\nu _1+2j}{2})}\Gamma {(\frac{\nu _2}{2})}} \bigg ]\bigg [\frac{ F^{\frac{\nu _1+2j}{2}-1}}{\big (1+F\frac{\nu _1}{nu_2} \big )^{\frac{\nu _1+\nu _2+2j}{2}}} \bigg ] \nonumber \\\approx & {} f_\nu (F) \big (1-\frac{\lambda }{2}\big ) + \bigg [\frac{ (\frac{\lambda }{2}) (\frac{\nu _1}{\nu _2})^{\frac{\nu _1+2}{2}} \Gamma {(\frac{\nu _1+\nu _2+2}{2})}}{\Gamma {(\frac{\nu _1+2}{2})}\Gamma {(\frac{\nu _2}{2})}} \bigg ]\bigg [\frac{ F^{\nu _1}}{\big (1+F\frac{\nu _1}{\nu _2} \big )^{\frac{\nu _1+\nu _2+2}{2}}} \bigg ] \nonumber \\= & {} f_\nu (F) + \frac{\lambda }{2} \big [f_\nu ^*(F) - f_\nu (F) \big ], \quad \text {where} \quad f_{\nu }^*(F)=\bigg (\frac{1}{\nu }\bigg )^{\frac{3}{2}} \bigg [\frac{F}{(1+\frac{F}{\nu })^{\frac{\nu +3}{2}} B[\frac{3}{2}, \frac{\nu }{2}]} \bigg ]. \nonumber \end{aligned}$$

Using the above first-order expansion of \(f_{\nu ,\lambda }(F)\) leads to the following local power of \(T_2\).

$$\begin{aligned} LP(T_2)\approx & {} \idotsint \limits _{ \sum _{i=1}^k w_{2i}F_i> d_{2\alpha }}\bigg [\prod _{i=1}^k f_{\nu _i}(F_i) + \sum _{j=1}^k \frac{\lambda _j}{2} \bigg ( f_{\nu _j}^*(F_j) - f_{\nu _j}(F_j) \bigg ) \bigg \{\prod _{i \ne j} \big [f_{\nu _i}(F_i) \big ]\bigg \} \bigg ] \prod _{i=1}^k\mathrm {d} F_i \nonumber \\\approx & {} \alpha + \bigg (\sum _{j=1}^k \frac{\lambda _j}{2}E_{H_0}\bigg [\bigg \{\frac{f_{\nu _j}^*(F_j) - f_{\nu _j}(F_j)}{f_{\nu _j}(F_j)}\bigg \}I_{\{\sum _{i=1}^k w_{2i}F_i> d_{2\alpha }\}} \bigg ]\bigg ) \nonumber \\&E_{H_0}[\cdot ]\quad \text {stands for expectation w.r.t} \quad F_1, \ldots , F_k \quad \text {under} \quad H_0 [F_i \sim F(1, \nu _i)]. \nonumber \\\approx & {} \alpha + \bigg (\sum _{j=1}^k \frac{\lambda _j}{2} E_{H_0}\bigg [\bigg \{\frac{F_j - 1}{\frac{F_j}{\nu _j}+1}\bigg \}I_{\{\sum _{i=1}^k w_{2i}F_i> d_{2\alpha }\}} \bigg ] \bigg )\nonumber \\\approx & {} \alpha + \frac{\Delta ^2}{2}\bigg (\sum _{j=1}^k \frac{n_j}{\sigma _j^2} E_{H_0}\bigg [\bigg \{\frac{[F_j - 1]\nu _j}{F_j+\nu _j}\bigg \}I_{\{\sum _{i=1}^k w_{2i}F_i > d_{2\alpha }\}} \bigg ] \bigg ) \quad \text {using} \quad \bigg [ \lambda _j=\frac{n_j\Delta ^2}{\sigma _j^2} \bigg ] .\nonumber \\&E_{H_0}[\cdot ] \quad \text {is obtained by simulation.}\nonumber \end{aligned}$$

For the special case \(n_1=\cdots =n_k=n\) and \(\nu _1=\cdots =\nu _k=\nu =n-1\) which implies \(w_{21}=\cdots =w_{2k}=1\), the local power of this exact test based on modified F reduces to

$$\begin{aligned} LP(T_2)\approx & {} \alpha + \frac{n\Delta ^2}{2}\bigg (\sum _{j=1}^k \frac{1}{\sigma _j^2}\bigg ) E_{H_0}\bigg [\bigg \{\frac{[F_1 - 1]\nu }{F_1+\nu }\bigg \}I_{\{\sum _{i=1}^k F_i> d_{2\alpha }\}} \bigg ] \nonumber \\= & {} \alpha + \bigg [\frac{n \Delta ^2}{2} \Psi \bigg ] E_{H_0} \bigg [ \bigg \{\frac{[F_1 - 1]\nu }{F_1 + \nu } \bigg \} I_{\{\sum _{i=1}^{k} F_i > d_{2\alpha }\}} \bigg ] \quad \text {where} \quad \Psi =\sum _{j=1}^k \frac{1}{\sigma _j^2}.\nonumber \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kifle, Y.G., Moluh, A.M., Sinha, B.K. (2021). Comparison of Local Powers of Some Exact Tests for a Common Normal Mean with Unequal Variances. In: Arnold, B.C., Balakrishnan, N., Coelho, C.A. (eds) Methodology and Applications of Statistics. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-83670-2_4

Download citation

Publish with us

Policies and ethics