Skip to main content

“Digital Proxies” for Validating Models of Past Socio-ecological Systems in the Mediterranean Landscape Dynamics Project

  • Chapter
  • First Online:
  • 268 Accesses

Part of the book series: Computational Social Sciences ((SIPA))

Abstract

All representations of the human past are models, whether they are in the form of narratives, equations, or computer algorithms. While we can never know the “true” past, archaeologists seek to create more reliable and useful models of the dynamics of ancient lives and societies. One of the most widely accepted ways to scientifically establish a model’s validity is to compare its results or predictions against observable, empirical, data. However, most archaeological models deal with richly dynamic, living human behavior, social relationships, and interactions with the environment, while the archaeological and associated paleoecological records are composed of fragmentary, altered, static, and discarded material culture; sediments and soils; and dead plant and animal remains. This apparent incommensurability between archaeological models and the empirical data needed to validate them has long created significant challenges for establishing the credibility of archaeological explanation. In spite of ongoing advances in data collection and analysis methods, we cannot change the nature of the archaeological record. But we can modify models to generate outputs more directly comparable with this record. The Mediterranean Landscape Dynamics Project (MedLanD) has created a sophisticated computational laboratory to simulate long-term dynamics of agropastoral land use and landscape evolution. To better evaluate these simulation models, we also have developed a validation instrument that creates a “digital proxy” record based on model results. The digital proxy is analogous to extracting a digital core at specified points in the gridded, digital landscape. It simulates the accumulation over time of a proxy-like record for modeled human land use, vegetation, landscape fire, and surface processes. Digital proxy “cores” can be compared directly with empirical samples taken from analogous points in real-world landscapes, improving our ability to validate complex models. We present an overview of our digital proxy modeling method and a test case of comparing digital and empirical data from locales in Mediterranean Spain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert, R. M., & Weiner, S. (2001). Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in earth sciences and human history (pp. 251–266).

    Google Scholar 

  • Altaweel, M. R., & Wu, Y. (2010). Route selection and pedestrian traffic: Applying an integrated modeling approach to understanding movement. Structure and Dynamics, 4.

    Google Scholar 

  • Ammerman, A. J., & Cavalli-Sforza, L. L. (1971). Measuring the rate of spread of early farming in Europe. Man, 6, 674–688. https://doi.org/10.2307/2799190

    Article  Google Scholar 

  • Banning, E. B. (2010). Houses, households, and changing society in the Late Neolithic and Chalcolithic of the Southern Levant. Paleorient, 36, 46–87.

    Article  Google Scholar 

  • Barton, C. M. (2013). Stories of the past or science of the future? Archaeology and computational social science. In A. Bevan & M. W. Lake (Eds.), Computational approaches to archaeological spaces (pp. 151–178). University College London, Institute of Archaeology Publications. Left Coast Press.

    Google Scholar 

  • Barton, C. M. (2016). From narratives to algorithms: Extending archaeological explanation beyond archaeology. In C. Isendahl & D. Stump (Eds.), Oxford handbook of historical ecology and applied archaeology (27pp). Oxford University Press.

    Google Scholar 

  • Barton, CM. (2021). cmbarton/ProxyModeling_2021: RMarkdown script and data for Digital Proxies... paper 2021, Zenodo, 1.0, https://doi.org/10.5281/ZENODO.5567816.

  • Barton, C. M., Bernabeu Aubán, J., Aura Tortosa, J. E., & Garcia Puchol, O. (1999). Landscape dynamics and socioeconomic change: an example from the Polop Alto valley. American Antiquity, 64, 609–634.

    Article  Google Scholar 

  • Barton, C. M., Arrowsmith, R., Falconer, S., Fall, P., & Sarjoughian, H. S. (2004a). NSF-BCE-CNH: Landuse and landscape socioecology in the Mediterranean Basin: A natural laboratory for the study of the long-term interaction of human and natural systems. (BCS 410269).

    Google Scholar 

  • Barton, C. M., Bernabeu Aubán, J., Aura Tortosa, J. E., & Molina Balaguer, L. (2004b). Historical contingency, nonlinearity, and the neolithization of the western Mediterranean. In L. Wandsnider & E. Athanassopoulos (Eds.), Current issues in Mediterranean landscape archaeology (pp. 99–124). University of Pennsylvania Press.

    Google Scholar 

  • Barton, C. M., Bernabeu Auban, J., Garcia Puchol, O., Schmich, S., & Molina Balaguer, L. (2004c). Long-term socioecology and contingent landscapes. Journal of Archaeological Method and Theory, 11, 253–295. https://doi.org/10.1023/B:JARM.0000047315.57162.b7

    Article  Google Scholar 

  • Barton, C. M., Ullah, I. I. T., & Mitasova, H. (2010). Computational modeling and Neolithic socioecological dynamics: A case study from Southwest Asia. American Antiquity, 75, 364–386.

    Article  Google Scholar 

  • Barton, C. M., Ullah, I. I. T., Bergin, S. M., Mitasova, H., & Sarjoughian, H. (2012). Looking for the future in the past: Long-term change in socioecological systems. Ecological Modelling, 241, 42–53. https://doi.org/10.1016/j.ecolmodel.2012.02.010

    Article  Google Scholar 

  • Barton, C. M., Ullah, I. I., & Heimsath, A. (2015a). How to make a Barranco: Modeling erosion and land-use in Mediterranean landscapes. Land, 4, 578–606. https://doi.org/10.3390/land4030578

    Article  Google Scholar 

  • Barton, C. M., Ullah, I. I. T., Mayer, G. R., Bergin, S. M., Sarjoughian, H. S., & Mitasova, H. (2015b). MedLanD modeling laboratory v.1. Arizona State University, CoMSES Computational Model Library.

    Google Scholar 

  • Barton, C. M., Ullah, I. I. T., Bergin, S. M., Sarjoughian, H. S., Mayer, G. R., Bernabeu-Auban, J. E., Heimsath, A. M., Acevedo, M. F., Riel-Salvatore, J. G., & Arrowsmith, J. R. (2016). Experimental socioecology: Integrative science for Anthropocene landscape dynamics. Anthropocene, 13, 34–45. https://doi.org/10.1016/j.ancene.2015.12.004

    Article  Google Scholar 

  • Bernabeu, J. (1993). El IIIr. Milenio a.C. en el País Valenciano. Los poblados de Jovades (Cocentaina. Alacant) y Arenal de la Costa (Ontinyent, Valencia). Saguntum, 26, 11–179.

    Google Scholar 

  • Bernabeu Aubán, J., & Orozco Köhler, T. (2005). Mas d’Is (Penàguila, Alicante): Un recinto monumental del VI milenio cal AC. In P. Arias, R. Ontañón, & C. García-Moncó (Eds.), III Congreso Sobre El Neolítico En La Península Ibérica (Santander, 2003) (pp. 485–495). Instituto Internacional de Investigaciones Prehistóricas de Cantabria.

    Google Scholar 

  • Bernabeu Aubán, J., Barton, C. M., Garcia, O., & La Roca, N. (1999). Prospecciones sistemáticas en el valle del Alcoi (Alicante): primeros resultados. Arqueología Espacial, 21, 29–64.

    Google Scholar 

  • Bernabeu Auban, J., Orozco Köhler, T., Diez Castillo, A., & Gomez Puche, M. (2003). Mas d’Is (Penàguila, Alicante): aldeas y recintos monumentales del Neolítico Antiguo en el Valle del Serpis. Trabajos de Prehistoria, 60, 39–59.

    Article  Google Scholar 

  • Bernabeu Auban, J., Molina Balaguer, L., Díez Castillo, A., & Orozco Köhler, T. (2006). Inequalities and power. Three millennia of prehistory in Mediterranean Spain (5600–2000 cal BC). In P. Díaz del Río & L. L. García Sanjuan (Eds.), Social inequality in Iberian late prehistory (BAR international series) (pp. 97–116). Archaeopress.

    Google Scholar 

  • Bernabeu Aubán, J., Molina Balaguer, L., Orozco Köhler, T., Diez Castillo, A., & Barton, C. M. (2006). Los Valles del Serpis (Alicante): 20 años de trabajos de campo. In M. S. Hernández Pérez, J. A. Soler Díaz, & J. A. López Padilla (Eds.), Actas Del IV Congreso Del Neolítico Peninsular (pp. 50–57). Museo Arqueológico de Alicante – MARQ.

    Google Scholar 

  • Bernabeu Auban, J., Molina Balaguer, L., Orozco Köhler, T., Díaz Castillo, A., & Barton, C. M. (2008). Early neolithic at the Serpis Valley, Alicante, Spain. In M. Diniz (Ed.), The early Neolithic in the Iberian Peninsula. Regional and transregional components. Proceedings of the XV World Congress (Lisbon, 2006) (International Series) (pp. 53–59). BAR.

    Google Scholar 

  • Bernabeu Auban, J., Barton, C. M., García Puchol, O., Diez Castillo, A., & Pardo Gordó, S. (2014). Prospecciones en la Canal de Navarrés: Campaña 2014. Servei de Patrimoni. Consellería de Cultura, Generalitat Valenciana, Valencia.

    Google Scholar 

  • Bernabeu, J., Pascual, J. L., Orozco, T., Badal, E., Fumanal, M. P., & García Puchol, O. (1994). Niuet (L’Alquería d’Asnar). Poblado del IIIr milenio a.C. Recerques del Museu d’Alcoi, 3, 9–74.

    Google Scholar 

  • Bevan, A., & Conolly, J. (2004). GIS, archaeological survey, and landscape archaeology on the Island of Kythera, Greece. Journal of Field Archaeology, 29, 123–138. https://doi.org/10.1179/jfa.2004.29.1-2.123

    Article  Google Scholar 

  • Bonet, A. (2004). Secondary succession of semi-arid Mediterranean old-fields in South-Eastern Spain: Insights for conservation and restoration of degraded lands. Journal of Arid Environments, 56, 213–233.

    Article  Google Scholar 

  • Bonet, A., & Pausas, J. G. (2007). Old field dynamics on the dry side of the Mediterranean Basin: Patterns and processes in semiarid SE Spain. In V. A. Cramer & R. J. Hobbs (Eds.), Old fields: Dynamics and restoration of abandoned farmland (pp. 247–264). Island Press.

    Google Scholar 

  • Box, G. E. (1979). Robustness in the strategy of scientific model building. In R. Launer & G. Wilkinson (Eds.), Robustness in statistics (pp. 201–236). Academic.

    Chapter  Google Scholar 

  • Cabanes, D., & Shahack-Gross, R. (2015). Understanding fossil Phytolith preservation: The role of partial dissolution in paleoecology and archaeology. PLoS One, 10, e0125532. https://doi.org/10.1371/journal.pone.0125532

    Article  Google Scholar 

  • Carrión, J. S., & Van Geel, B. (1999). Fine-resolution Upper Weichselian and Holocene palynological record from Navarrés (Valencia, Spain) and a discussion about factors of Mediterranean forest succession. Review of Palaeobotany and Palynology, 106, 209–236. https://doi.org/10.1016/S0034-6667(99)00009-3

    Article  Google Scholar 

  • Carter, J., Howden, S., Day, K., McKeon, G., (1998). Soil carbon, nitrogen and phosphorous and biodiversity in relation to climate change, evaluation of the impact of climate change on northern Australian grazing industries, vol. 139A. Final report for the Rural Industries Research and Development Corporation on Project DAQ.

    Google Scholar 

  • Chamberlin, T. C. (1890). The method of multiple working hypotheses. Science, 15, 92–96.

    Article  Google Scholar 

  • Clark, J. S. (1988). Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quaternary Research, 30, 67–80. https://doi.org/10.1016/0033-5894(88)90088-9

    Article  Google Scholar 

  • Codding, B. F., & Bird, D. W. (2015). Behavioral ecology and the future of archaeological science. Journal of Archaeological Science. https://doi.org/10.1016/j.jas.2015.02.027

  • Diez Castillo, A., Barton, C. M., La Roca Cervigón, N., & Bernabeu Auban, J. (2008). Landscape Socioecology in the Serpis Valley (10,000–4000 BP). in Layers of perception. Proceedings of the 35th international conference on computer applications and quantitative methods in archaeology (CAA) (Berlin, Germany, April 2–6, 2007). Presented at the conference on computer applications and quantitative methods in archaeology (CAA), Dr. Rudolf Habelt GmbH, Berlin, pp. 1–7.

    Google Scholar 

  • Diez Castillo, A., Bernabeu Aubán, J., Barton, C. M., García Puchol, O., Bergin, S.M., & Pardo Gordó, S., 2014. Paperless survey? New methodological approaches to archaeological fieldwork, the case of La Canal de Navarrés. Presented at the making sense of archaeological survey, Instituto Universitario de Investigación en Arqueología Ibérica Universidad de Jaén.

    Google Scholar 

  • Edwards, K. J. (1993). Models of mid-Holocene forest farming for North-West Europe. In F. M. Chambers (Ed.), Climate change and human impact on the landscape (pp. 132–145). Chapman and Hall.

    Google Scholar 

  • Esteban, I., De Vynck, J. C., Singels, E., Vlok, J., Marean, C. W., Cowling, R. M., Fisher, E. C., Cabanes, D., & Albert, R. M. (2017). Modern soil phytolith assemblages used as proxies for Paleoscape reconstruction on the south coast of South Africa. Quaternary International, 434, 160–179. https://doi.org/10.1016/j.quaint.2016.01.037

    Article  Google Scholar 

  • Evett, R. R., & Cuthrell, R. Q. (2013). Phytolith evidence for a grass-dominated prairie landscape at Quiroste Valley on the Central Coast of California. California Archaeology, 5, 319–335. https://doi.org/10.1179/1947461X13Z.00000000017

    Article  Google Scholar 

  • Flannery, K. V. (1993). Will the real model please stand up: comments on Saidel’s ‘Round house or square’. Journal of Mediterranean Archaeology, 6, 109–117.

    Article  Google Scholar 

  • Flinn, D., Hopmans, P., Farrell, P., & James, J. (1979). Nutrient loss from the burning of Pinus radiata logging residue. Australian Forest Research, 9, 17–23.

    Google Scholar 

  • Forbes, M. S., Raison, R. J., & Skjemstad, J. O. (2006). Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Science of the Total Environment, 370, 190–206. https://doi.org/10.1016/j.scitotenv.2006.06.007

    Article  Google Scholar 

  • Fort, J., Pujol, T., & Linden, M. (2012). Modelling the Neolithic transition in the Near East and Europe. American Antiquity, 77, 203–219. https://doi.org/10.7183/0002-7316.77.2.203

    Article  Google Scholar 

  • Fredlund, G. G., & Tieszen, L. T. (1994). Modern Phytolith assemblages from the North American Great Plains. Journal of Biogeography, 21, 321–335. https://doi.org/10.2307/2845533

    Article  Google Scholar 

  • Freeman, J., Hard, R. J., & Mauldin, R. P. (2017). A theory of regime change on the Texas Coastal Plain. Quaternary International. https://doi.org/10.1016/j.quaint.2016.12.029

  • García Puchol, O., & Aura Tortosa, J. E. (Eds.). (2006). El Abric de la Falguera (Alcoi, Alacant). 8.000 años de ocupación humana en la cabecera del rio Alcoi. CAM (Caja de Ahorros del Mediterráneo) y Ajuntament d’Alcoi, Alicante.

    Google Scholar 

  • García Puchol, O., Barton, C. M., & Bernabeu Aubán, J. (2008). Programa de prospección geofísica, microsondeos y catas para la caracterización de un gran foso del IV milenio cal AC en Alt del Punxó (Muro de L’Alcoi, Alacant). Trabajos de Prehistoria, 65, 143–154. https://doi.org/10.3989/tp.2008.v65.i1.140

    Article  Google Scholar 

  • García Puchol, O., Barton, M., Bernabeu Aubán, J., Diez Castillo, A., & Pardo Gordò, S. (2014). De la prospección sistemática al laboratorio GIS en La Canal de Navarrés. SAGVNTVM. Papeles del Laboratorio de Arqueología de Valencia, 46, 209–214. https://doi.org/10.7203/SAGVNTVM.46.4239

    Article  Google Scholar 

  • Gholami, S., Sarjoughian, H. S., Godding, G. W., Peters, D. R., & Chang, V. (2014). Developing composed simulation and optimization models using actual supply-demand network datasets. In: Simulation conference (WSC), 2014 Winter. Presented at the simulation conference (WSC), 2014 Winter, pp. 2510–2521. https://doi.org/10.1109/WSC.2014.7020095.

  • Gremillion, K. J. (2002). Foraging theory and hypothesis testing in archaeology: An exploration of methodological problems and solutions. Journal of Anthropological Archaeology, 21, 142–164. https://doi.org/10.1006/jaar.2001.0391

    Article  Google Scholar 

  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.-H., Weiner, J., Wiegand, T., & DeAngelis, D. L. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310, 987–991. https://doi.org/10.1126/science.1116681

    Article  Google Scholar 

  • IVIA. (2015). Weather Station wind data from the canal de Navarrés. Instituto Valenciano de Investigaciones Agrarias.

    Google Scholar 

  • Katz, O., Cabanes, D., Weiner, S., Maeir, A. M., Boaretto, E., & Shahack-Gross, R. (2010). Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: An application at Tell es-Safi/Gath, Israel. Journal of Archaeological Science, 37, 1557–1563. https://doi.org/10.1016/j.jas.2010.01.016

    Article  Google Scholar 

  • Keene, A. S. (1983). 6 – Biology, behavior, and borrowing: A critical examination of optimal foraging theory in archaeology. In J. A. Moore & A. S. Keene (Eds.), Archaeological hammers and theories (pp. 137–155). Academic. https://doi.org/10.1016/B978-0-12-505980-0.50014-8

    Chapter  Google Scholar 

  • Kohler, T. A., & van der Leeuw, S. E. (2007). The model-based archaeology of socionatural systems. School for Advanced Research Press.

    Google Scholar 

  • Kohler, T. A., Bocinsky, R. K., Cockburn, D., Crabtree, S. A., Varien, M. D., Kolm, K. E., Smith, S., Ortman, S. G., & Kobti, Z. (2012). Modelling prehispanic Pueblo societies in their ecosystems. Ecological Modelling, 241, 30–41. https://doi.org/10.1016/j.ecolmodel.2012.01.002

    Article  Google Scholar 

  • Le, J., & Shackleton, N. J. (1994). Reconstructing paleoenvironment by transfer function: Model evaluation with simulated data. Marine Micropaleontology, 24, 187–199. https://doi.org/10.1016/0377-8398(94)90021-3

    Article  Google Scholar 

  • Lemmen, C., Gronenborn, D., & Wirtz, K. W. (2011). A simulation of the Neolithic transition in Western Eurasia. Journal of Archaeological Science, 38, 3459–3470. https://doi.org/10.1016/j.jas.2011.08.008

    Article  Google Scholar 

  • Mayer, G. R., & Sarjoughian, H. S. (2009). Composable cellular automata. Simulation, 85, 735–749. https://doi.org/10.1177/0037549709106341

    Article  Google Scholar 

  • Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: An introduction to computational models of social life. Princeton University Press.

    Google Scholar 

  • Mitasova, H., Barton, C. M., Ullah, I. I. T., Hofierka, J., & Harmon, R. S. (2013). GIS-based soil erosion modeling. In J. Shroder & M. Bishop (Eds.), Treatise in geomorphology (Remote sensing and GI science in geomorphology) (Vol. 3, pp. 228–258). Academic.

    Chapter  Google Scholar 

  • Neumann, K., Strömberg, C. A. E., Ball, T., Albert, R. M., Vrydaghs, L., & Cummings, L. S. (2019). International code for Phytolith nomenclature (ICPN) 2.0. Annals of Botany, 124, 189–199. https://doi.org/10.1093/aob/mcz064

    Article  Google Scholar 

  • Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E., & Huntley, B. (2008). A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews, 27, 1872–1885. https://doi.org/10.1016/j.quascirev.2008.07.009

    Article  Google Scholar 

  • Parnell, A. C., Buck, C. E., & Doan, T. K. (2011). A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction. Quaternary Science Reviews, 30, 2948–2960. https://doi.org/10.1016/j.quascirev.2011.07.024

    Article  Google Scholar 

  • Perry, G. L. W., & O’Sullivan, D. (2018). Identifying narrative descriptions in agent-based models representing past human-environment interactions. Journal of Archaeological Method and Theory, 25, 795–817. https://doi.org/10.1007/s10816-017-9355-x

    Article  Google Scholar 

  • Piperno, D. R. (2006). Phytoliths: A comprehensive guide for archaeologists and paleoecologists. Rowman Altamira.

    Google Scholar 

  • Riris, P. (2018). Assessing the impact and legacy of swidden farming in neotropical interfluvial environments through exploratory modelling of post-contact Piaroa land use (Upper Orinoco, Venezuela). The Holocene, 28, 945–954. https://doi.org/10.1177/0959683617752857

    Article  Google Scholar 

  • Robinson, D. T., Di Vittorio, A., Alexander, P., Arneth, A., Barton, C. M., Brown, D. G., Kettner, A., Lemmen, C., O’Neill, B. C., Janssen, M., Pugh, T. A. M., Rabin, S. S., Rounsevell, M., Syvitski, J. P., Ullah, I., & Verburg, P. H. (2018). Modelling feedbacks between human and natural processes in the land system. Earth System Dynamics, 9, 895–914. https://doi.org/10.5194/esd-9-895-2018

    Article  Google Scholar 

  • Rogers, J. D., & Cegielski, W. H. (2017). Opinion: Building a better past with the help of agent-based modeling. Proceedings of the National Academy of Sciences, 114, 12841–12844. https://doi.org/10.1073/pnas.1718277114

    Article  Google Scholar 

  • Romanowska, I., Wren, C. D., & Crabtree, S. A. (2021). Agent-based modeling for archaeology: Simulating the complexity of societies. SFI Press.

    Google Scholar 

  • Sarjoughian, H., Smith, J., Godding, G., & Muqsith, M. (2013). Model composability and execution across simulation, optimization, and forecast models. In Proceedings of the symposium on theory of modeling & simulation-DEVS integrative M&S symposium (p. 30). Society for Computer Simulation International.

    Google Scholar 

  • Sarjoughian, H. S., Meyer, G. R., Ullah, I. I., & Barton, C. M. (2015). Managing hybrid model composition complexity: Human–environment simulation models. In L. Yilmaz (Ed.), Concepts and methodologies for modeling and simulation, simulation foundations, methods and applications (pp. 107–134). Springer International Publishing.

    Google Scholar 

  • Schiffer, M. B. (1987). Formation processes of the archaeological record. University of New Mexico Press.

    Google Scholar 

  • Smith, E. A., Bettinger, R. L., Bishop, C. A., Blundell, V., Cashdan, E., Casimir, M. J., Christenson, A. L., Cox, B., Dyson-Hudson, R., Hayden, B., Richerson, P. J., Roth, E. A., Simms, S. R., & Stini, W. A. (1983). Anthropological applications of optimal foraging theory: A critical review [and comments and reply]. Current Anthropology, 24, 625–651.

    Article  Google Scholar 

  • Snitker, G. (2018). Identifying natural and anthropogenic drivers of prehistoric fire regimes through simulated charcoal records. Journal of Archaeological Science, 95, 1–15. https://doi.org/10.1016/j.jas.2018.04.009

    Article  Google Scholar 

  • Snitker, G. (2019). Anthropogenic fire and the development of Neolithic agricultural landscapes: Connecting archaeology, paleoecology, and fire science to evaluate human impacts on fire regimes (PhD dissertation). Arizona State University.

    Google Scholar 

  • Snitker, G. (2020). The Charcoal Quantification Tool (CharTool): A Suite of Open-source Tools for Quantifying Charcoal Fragments and Sediment Properties in Archaeological and Paleoecological Analysis. Ethnobiology Letters, 11, 103–115. https://doi.org/10.14237/ebl.11.1.2020.1653.

  • Snitker, G., Castillo, A. D., Barton, C. M., Aubán, J. B., Puchol, O. G., & Pardo-Gordó, S. (2018). Patch-based survey methods for studying prehistoric human land-use in agriculturally modified landscapes: A case study from the Canal de Navarrés, Eastern Spain. Quaternary International, Geoarchaeology: A toolbox for revealing latent data in sedimentological and archaeological records, 483, 5–22. https://doi.org/10.1016/j.quaint.2018.01.034

    Article  Google Scholar 

  • Tsartsidou, G., Lev-Yadun, S., Albert, R.-M., Miller-Rosen, A., Efstratiou, N., & Weiner, S. (2007). The phytolith archaeological record: Strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. Journal of Archaeological Science, 34, 1262–1275. https://doi.org/10.1016/j.jas.2006.10.017

    Article  Google Scholar 

  • Ullah, I. I. T. (2017). The consequences of human land-use strategies during the PPNB-LN transition: A simulation modeling approach, anthropological research papers, 60. Arizona State University.

    Google Scholar 

  • Ullah, I. I. T., & Bergin, S. (2012). Modeling the consequences of village site location: Least cost path modeling in a coupled GIS and agent-based model of village agropastoralism in Eastern Spain. In D. A. White & S. L. Surface-Evans (Eds.), Least cost analysis of social landscapes: Archaeological case studies (pp. 155–173). University of Utah Press.

    Google Scholar 

  • van der Leeuw, S. E. (2004). Why model? Cybernetics and Systems: An International Journal, 35, 117–128. https://doi.org/10.1080/01969720490426803

    Article  Google Scholar 

  • Verburg, P. H., Dearing, J. A., Dyke, J. G., van der Leeuw, S., Seitzinger, S., Steffen, W., & Syvitski, J. (2016). Methods and approaches to modelling the Anthropocene. Global Environmental Change, 39, 328–340. https://doi.org/10.1016/j.gloenvcha.2015.08.007

    Article  Google Scholar 

  • Watts, J., & Ossa, A. (2016). Exchange network topologies and agent-based modeling: Economies of the sedentary-period Hohokam. American Antiquity, 81, 623–644. https://doi.org/10.1017/S0002731600101003

    Article  Google Scholar 

  • Wells, H. G., & Roger. (1895). The time machine, Oxford World’s classics. William Heinemann.

    Google Scholar 

  • Wurzer, Gabriel., Kowarik, Kerstin., & Reschreiter, Hans. (Eds.). (2015). Agent-based Modeling and Simulation in Archaeology. Springer.

    Google Scholar 

  • Zurro, D. (2018). One, two, three phytoliths: Assessing the minimum phytolith sum for archaeological studies. Archaeological and Anthropological Sciences, 10, 1673–1691. https://doi.org/10.1007/s12520-017-0479-4

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation: grants BCS-410269, DEB-1313727; DSI-NRF Centre of Excellence in Palaeosciences; Arizona State University School of Human Evolution and Social Change, Center for Social Dynamics & Complexity, School of Earth and Space Exploration; Universitat de València, Departament de Prehistòria, Arqueologia i Història Antiga; San Diego State University, Department of Anthropology; University of Witswaterand, Evolutionary Studies Institute; and the GRASS GIS Development Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michael Barton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barton, C.M. et al. (2021). “Digital Proxies” for Validating Models of Past Socio-ecological Systems in the Mediterranean Landscape Dynamics Project. In: Pardo-Gordó, S., Bergin, S. (eds) Simulating Transitions to Agriculture in Prehistory . Computational Social Sciences(). Springer, Cham. https://doi.org/10.1007/978-3-030-83643-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83643-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83642-9

  • Online ISBN: 978-3-030-83643-6

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics