Skip to main content

Fingerprint Individuality

  • Chapter
  • First Online:
Handbook of Fingerprint Recognition

Abstract

Scientific evidence supporting fingerprint individuality (i.e., quantifying the extent of uniqueness of a fingerprint) is being increasingly demanded, particularly in forensic applications when a suspect is tried for conviction in a court of law. This has generated interest in designing fingerprint individuality models which will quantify the evidential value of fingerprints. This chapter introduces both theoretical and empirical studies on fingerprint individuality: the former is based on statistical models taking into account inter-class and intra-class pattern variations, the latter relying on modeling match (similarity) scores (given a matcher and a corpus of operational fingerprint data). Fingerprint persistence over time is finally addressed in the last section of the chapter.

Portions reprinted with permission from IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 8, pp. 1010–1025, 2002. © 2002 IEEE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amy, L. (1948). Recherches sur l’identification des traces papillaries. Annales de Medecine Legale, 28(2), 96–101.

    Google Scholar 

  • Balthazard, V. (1911). De l’identification par les empreintes digitales. Comptes Rendus des Seances de l’Academie des Sciences, 152, 1862–1864.

    Google Scholar 

  • Bose, H. C. (1917). Hints on finger-prints with a telegraphic code for finger impressions. Calcutta/Simla: Thacker Spink and Company.

    Google Scholar 

  • Champod, C., & Margot, P. A. (1996). Computer assisted analysis of minutiae occurrences on fingerprints. In J. Almog & E. Spinger (Eds.), Proceedings of Internaional Symposium on Fingerprint Detection and Identification, (pp. 305). Israel National Police, Jerusalem

    Google Scholar 

  • Chen, J., & Moon, Y. S. (2008). The statistical modelling of fingerprint minutiae distribution with implications for fingerprint individuality studies. In Proceedings of International Conferences on Computer Vision and Pattern Recognition (CVPR08) (pp. 1–7).

    Google Scholar 

  • Cole, S. A. (2001a). What counts for identity? Fingerprint Whorld, 27(103), 7–35.

    Google Scholar 

  • Cole, S. A. (2001b). Suspect identities: A history of fingerprint and criminal identification. Cambridge, Harvard University Press.

    Google Scholar 

  • Cole, S. A. (2005). More than zero: Accounting for error in latent fingerprint identification. The Journal of Criminal Law & Criminology, 95(3), 985–1078.

    Google Scholar 

  • Cummins, H., & Midlo, C. (1943). Fingerprints, palms and soles. Dover.

    Google Scholar 

  • Daugman, J. (1999). Recognizing persons by their iris patterns. In A. K. Jain, R. Bolle, & S. Pankanti (Eds.), Biometrics: Personal identification in a networked society. Kluwer.

    Google Scholar 

  • Daugman, J. (2015). Information theory and the IrisCode. IEEE Transactions on Information Forensics and Security, 11(2), 400–409.

    Google Scholar 

  • Egli, N. M., Champod, C., & Margot, P. (2007). Evidence evaluation in fingerprint comparison and automated fingerprint identification systems - Modelling within finger variability. Forensic Science International, 167(2–3), 189–195.

    Google Scholar 

  • Galton, F. (1892). Finger prints. Macmillan.

    Google Scholar 

  • Golfarelli, M., Maio, D., & Maltoni, D. (1997). On the error-reject tradeoff in biometric verification systems. IEEE Transactions on Pattern Analysis Machine Intelligence, 19(7), 786–796.

    Google Scholar 

  • Gupta, S. R. (1968). Statistical survey of ridge characteristics. International Criminal Police Review, 218(130).

    Google Scholar 

  • Haber, L., & Haber, R. N. (2004). Error rates for human latent fingerprint examiners. In N. Ratha, & R. Bolle (Eds.), Automatic fingerprint recognition systems. Springer.

    Google Scholar 

  • Henry, E. (1900). Classification and uses of finger prints. Routledge.

    Google Scholar 

  • Houck, M. M., & Siegel, J. A. (2009). Fundamentals of forensic science (2nd ed.). Academic Press.

    Google Scholar 

  • Jain, A. K., Hong, L., Pankanti, S., & Bolle, R. (1997). An identity authentication system using fingerprints. Proceedings of the IEEE, 85(9), 1365–1388.

    Google Scholar 

  • Jain, A. K., Prabhakar, S., & Pankanti, S. (2001). Twin test: On discriminability of fingerprints. In Proceedings of International Conferences on Audio- and Video-Based Biometric Person Authentication (3rd ed.).

    Google Scholar 

  • Jain, A. K., Prabhakar, S., & Pankanti, S. (2002). On the similarity of identical twin fingerprints. Pattern Recognition, 35(11), 2653–2663.

    Google Scholar 

  • Kingston, C. (1964). Probabilistic analysis of partial fingerprint patterns, Ph.D. Thesis, University of California.

    Google Scholar 

  • Lim, C. Y., & Dass, S. C. (2011). Assessing fingerprint individuality using EPIC: A case study in the analysis of spatially dependent marked processes. Technometrics, 53(2), 112–124.

    Google Scholar 

  • Lin, C. H., Liu, J. H., Ostenberg, J. W., & Nicol, J. D. (1982). Fingerprint comparison I: Similarity of fingerprints. Journal of Forensic Sciences, 27(2), 290–304.

    Google Scholar 

  • Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., & Jain, A. K. (2002). FVC2002: Second fingerprint verification competition. In Proceedings of International Conferences on Pattern Recognition (16th ed.).

    Google Scholar 

  • Meagher, S. B., Buldowle, B., & Ziesig, D. (1999). 50K fingerprint comparison test, United States of America vs. Byron Mitchell – U.S. District Court Eastern District of Philadelphia. Government Exhibits 6–8 and 6–9 in Daubert Hearing before Judge J. Curtis Joyner, July 8–9, 1999.

    Google Scholar 

  • Monson, K. L., Roberts, M. A., Knorr, K. B., Ali, S., Meagher, S. B., Biggs, K., Blume, P., Brandelli, D., Marzioli, A., Reneau, R., & Tarasi, F. (2019). The permanence of friction ridge skin and persistence of friction ridge skin and impressions: A comprehensive review and new results. Forensic Science International, 297, 111–131.

    Google Scholar 

  • Nagar, A., Choi, H., & Jain, A. K. (2012). Evidential value of automated latent fingerprint comparison: An empirical approach. IEEE Transactions on Information Forensics and Security, 7(6), 1752–1765.

    Google Scholar 

  • Neumann, C., Champod, C., Puch-Solis, R., Egli, N., Anthonioz, A., Meuwly, D., & Bromage-Griffiths, A. (2006). Computation of likelihood ratios in fingerprint identification for configurations of three minutiae. Journal of Forensic Sciences, 51(6), 1255–1266.

    Google Scholar 

  • Newman, A. (2001). Fingerprinting’s reliability draws growing court challenges. The New York Times.

    Google Scholar 

  • NRC. (2009). National Research Council. In Strengthening forensic science in the United States: A path forward. National Academies Press.

    Google Scholar 

  • Osterburg, J. W. (1964). An inquiry into the nature of proof: The identity of fingerprints. Journal of Forensic Sciences, 9(4), 413–427.

    Google Scholar 

  • Osterburg, J., Parthasarathy, T., Raghaven, T., & Sclove, S. (1977). Development of a mathematical formula for the calculation of fingerprint probabilities based on individual characteristic. Journal American Statistic Association, 72(360a), 772–778.

    Google Scholar 

  • Pankanti, S., Prabhakar, S., & Jain, A. K. (2002). On the individuality of fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(8), 1010–1025.

    Google Scholar 

  • Pearson, K. (1930). The life and letters of Francis Galton (Vol. IIIA). Cambridge University Press.

    Google Scholar 

  • Pearson, K. (1933). Galton’s work on evidential value of fingerprints. Sankhya: Indian Journal of Statistics, 1(50).

    Google Scholar 

  • Rice, J. A. (1995). Mathematical statistics and data analysis (2nd ed.). Duxbury Press.

    Google Scholar 

  • Roddy, A., & Stosz, J. (1997). Fingerprint features: Statistical-analysis and system performance estimates. Proceedings of the IEEE, 85(9), 1390–1421.

    Google Scholar 

  • Roxburgh, T. (1933). On evidential value of fingerprints. Sankhya: Indian Journal of Statistics, 1, 189–214.

    Google Scholar 

  • Saks, M. J., & Koehler, J. J. (2005). The coming paradigm shift in forensic identification science. Science, 309(5736), 892–895.

    Google Scholar 

  • Saltzman, J. (2005a). SJC bars a type of prints at trial. The Boston Globe.

    Google Scholar 

  • Saltzman, J. (2005b). Massachusetts Supreme Judicial Court to hear arguments on banning fingerprint evidence. The Boston Globe.

    Google Scholar 

  • Sclove, S. L (1979). The occurrence of fingerprint characteristics as a two dimensional process. Journal of American Statistical Association, 74(367), 588–595.

    Google Scholar 

  • Stoney, D. A. (1985). A quantitative assessment of fingerprint individuality. Ph.D. Thesis, University of California.

    Google Scholar 

  • Stoney, D. A. (1988). Distribution of epidermal ridge minutiae. American Journal of Physical Anthropology, 77, 367–376.

    Google Scholar 

  • Stoney, D. A., & Thornton, J. I. (1986). A critical analisys of quantitative fingerprints individuality models. Journal of Forensic Sciences, 31(4), 1187–1216.

    Google Scholar 

  • Su, C., & Srihari, S. (2010). Evaluation of rarity of fingerprints in forensics. In Proceedings of Advances in Neural Information Processing Systems (pp. 1207–1215).

    Google Scholar 

  • Trauring, M. (1963). Automatic comparison of finger-ridge patterns. Nature, 197, 938–940.

    Google Scholar 

  • Wentworth, B., & Wilder, H. H. (1918). Personal identification. R.G. Badger.

    Google Scholar 

  • Yoon, S., & Jain, A. K. (2015). Longitudinal study of fingerprint recognition. Proceedings of the National Academy of Sciences,  112(28), 8555–8560.

    Google Scholar 

  • Zhu, Y., Dass, S. C., & Jain A. K. (2007). Statistical models for assessing the individuality of fingerprints. IEEE Transactions on Information Forensics and Security, 2(3), 391–401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maltoni, D., Maio, D., Jain, A.K., Feng, J. (2022). Fingerprint Individuality. In: Handbook of Fingerprint Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-83624-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83624-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83623-8

  • Online ISBN: 978-3-030-83624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics